期刊文献+

城市污泥堆肥过程中堆体表面沉降及减容率的研究 被引量:3

Study on pile surface settlements and volume reduction ratios during sewage sludge composting
原文传递
导出
摘要 通过测定堆肥过程中堆体表面沉降量的动态变化,结合堆肥温度、含水量和挥发性固体(VS)含量的变化,对堆体表面沉降和减容率及其影响因素进行研究。研究结果表明,城市污泥∶树皮(1∶1)处理的升温速率、最高温度和高温维持时间、含水量和VS含量去除率等均高于城市污泥∶秸秆(1∶1)处理,其灭菌、生物干燥和有机质降解效果较好。堆体表面沉降可分为物理压实沉降和有机质降解沉降,城市污泥∶树皮(1∶1)的物理压缩沉降量低于城市污泥∶秸秆(1∶1),主要是因为秸秆作为调理剂的支撑作用比树皮差;前者的有机质降解沉降量大于后者,这与堆肥温度、含水量和VS含量的去除率等因素有关。 Through determination of the composting surface settlement dynamic variations, combined with the composting temperature, moisture and volatile solids (VS) content changes, the pile surface settlements and reduction ratios and its influence factor were studied. The results show that sewage sludge: bark(l: 1) treatment had a better effect for sterilization, biological drying and organic matter degradation than sewage sludge: corn- stalks (1:1 ) treatment in the aspect of temperature rising rate, maximum temperature, high temperature lasting time, water content and VS content removal rate. Pile surface settlements should be divided into physical com- paction settlement and organic matter degradation settlement. Moreover, sewage sludge: bark ( 1:1 ) treatment had a lower physical compaction settlement than sewage sludge: cornstalks (1:1 ) treatment, which was caused by the worse supporting effects provide by the cornstalks as an amendments. As a result, the former treatment had a lower organic matter degradation settlement than the latter ones, which was correlated with the factors of composting temperature, water content and VS content removal rate.
出处 《环境工程学报》 CAS CSCD 北大核心 2011年第12期2849-2853,共5页 Chinese Journal of Environmental Engineering
基金 环保公益性行业科研专项项目(200909042) 国家自然科学基金资助项目(50908220)
关键词 表面沉降量 表观减容率 堆肥温度 含水量 VS含量 pile surface settlement bulk volume reduction ratio composting temperature water content volatile solid content
  • 相关文献

参考文献13

  • 1陈同斌,黄启飞,高定,郑玉琪,吴吉夫.中国城市污泥的重金属含量及其变化趋势[J].环境科学学报,2003,23(5):561-569. 被引量:317
  • 2蒋建国,杨勇,贾莹,杜雪娟,杨世辉.调理剂和通风方式对污泥生物干化效果的影响[J].环境工程学报,2010,4(5):1167-1170. 被引量:23
  • 3Larney F. J. , Olson A. F. , Carcamo A. A. , et al. Physical changes during active and passive composting of beef feedlot manure in winter and summer. Bioresoure Technology, 2000, 75(2) :139-148.
  • 4Brodie H. L. , Carr L. E. , Condon P. A comparison of static pile and turned windrow methods for poultry litter compost production. Compost Science and Utilization, 2000, 8(3):178-189.
  • 5Breitenbeck G. A. , Schellinger D. Calculating the reduction in material mass and volume during composting. Compost Science and Utilization, 2004, 12 (4) : 365 -371.
  • 6Van Ginkel J. T. , Raats P. A. C. , Van Haneghem. Bulk density and porosity distributions in a compost pile. Netherlands Journal of Agricultural Science, 1999, 47 ( 2 ) : 105-121.
  • 7罗维,陈同斌,高定,郑玉琪,郑国砥.城市污泥-猪粪混合堆肥过程中湿度的层次效应及其动态变化[J].环境科学,2004,25(2):140-144. 被引量:12
  • 8Rynk R. Monitoring moisture in composting systems. BioCycle, 2000, 41(10):53-57.
  • 9Jewell W. J. , Dondero N. C. , Van Soest P. J. , et al. High temperature stabilization and moisture removal from aninlal wastes for by-product recovery. Final report pre- pared for the cooperative state research service, USDA, Washington, DC. Project number SEA/CR 616-15-168. 1984. 169.
  • 10Haug R. T. The Practical Handbook of Compost Engi- neering. Lewis publishers, Boca Raton, Florida, 1993.

二级参考文献78

共引文献352

同被引文献18

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部