期刊文献+

一致分布点集Delaunay三角化最佳期望时间算法

Optimal Expected-Time Algorithm for Delaunay Triangulation of Uniform Sites
下载PDF
导出
摘要 对文献(Dwyer R A.Higher-dimensional Voronoi diagrams in linear expected time.Discrete&ComputationalGeometry,1991,6(4):342-367)给出的对d≥2维空间站点集合构造Delaunay超三角形算法做了改进,提高了其计算效率,并把站点的分布从限于单位球体扩展成d≥2维空间中任意凸的超多面体.证明了如果站点是独立地从一致分布在凸的超多面体的点集中取出,在线性期望时间内可对站点集实现Delaunay三角化.该证明方法比较直观.虽然这类算法对输入点集有一致分布的要求,但在很多实际应用情况下这种要求常是被满足的,此时使用这类算法便可体现文中算法快速和易于实现的优点. This paper presents an algorithm that improves the results in reference(Dwyer R A.Higher-dimensional Voronoi diagrams in linear expected time.Discrete Computational Geometry,1991,6(4): 342-367).The improvements are improving the efficiency of the algorithm,extending the region of the sites distributed from a unit sphere to any convex polyhedron.The main results are as following.If the sites are chosen independently from a uniform distribution on a convex d≥2 dimension polyhedron,the modified algorithm can create its Delaunay triangulation in linear time.Although this kind of algorithm requires that sites are drawn independently from a uniform distribution,this requirement is often satisfied by many applications,in which the advantage of simplicity and efficiency of the algorithm can be expressed very well.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2011年第12期1949-1958,共10页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60933008 60573181 61070093) 山东省优秀中青年科学家基金(BS2009DX026) 山东大学自主创新基金(2010HW010)
关键词 DELAUNAY三角化 VORONOI图 超多面体 最佳期望时间 Delaunay triangulation Voronoi diagram hyper polyhedron expected optimization time
  • 相关文献

参考文献10

  • 1Dwyer,R. A.Higher-dimensional Voronoi diagrams in linear expected time. Discrete and Computational Geometry . 1991
  • 2曾薇,孟祥旭,杨承磊,杨义军.平面多边形域的快速约束Delaunay三角化[J].计算机辅助设计与图形学学报,2005,17(9):1933-1940. 被引量:24
  • 3屠长河,潘荣江,孟祥旭.一种随机聚合网屏的生成算法[J].计算机学报,2000,23(9):938-942. 被引量:5
  • 4Mulmuley K.Computational geometry:an introductionthrough randomized algorithm. . 1993
  • 5Seidel,R.Small-Dimensional Linear Programming and Convex Hulls Made Easy. Discrete and Computational Geometry . 1991
  • 6Motwani R,Raghavan P.Randomized Algorithms. . 1995
  • 7Bentley JL,Weide BW,Yao AC.Optimal expected-time algorithms for closest point problems. ACM Transactions on Mathematical Software . 1980
  • 8Qi M,Yang C L,Tu C H,et al.A GPU-based algorithm forbuilding stochastic clustered-dot screens. Proceedings ofthe 3rd International Symposium on Visual Computing . 2007
  • 9Preparrata F P,Shamos M I.Computational geometry:anintroduction. . 1988
  • 10O’’Rourke J.Computational geometry in C. . 1998

二级参考文献12

  • 1张远鹏,计算机图像处理技术基础,1996年
  • 2Azevedo E F D, Simpson R B. On optimal interpolation triangle incidences[J]. SIAM Journal on Scientific and Statistical Computing, 1989, 10(6): 1063~1075.
  • 3Sibson R. Locally equiangular triangulations[J]. The Computer Journal, 1978, 21(3): 243~245.
  • 4Bentley J L, Weide B W, Yao A C. Optimal expected-time algorithms for closest point problems[J]. ACM Transactions on Mathematical Software (TOMS), 1980, 6(4): 563~580.
  • 5Gold C M. Three approaches to automated topology and how computational geometry helps[A]. In: Proceedings of the 6th International Symposium on Spatial Data Handling, Edinburgh, 1994. 145~158.
  • 6Sack J R, Urrutia J. Handbook of Computational Geometry[M]. Amsterdam: Elsevier Science, 2000.
  • 7Fang Tsung Pao, Piegl Les A. Delaunay triangulation using a uniform grid[J]. IEEE Computer Graphics and Applications, 1993, 13(3): 36~47.
  • 8Piegl L A, Richard A M. Algorithm and data structure for triangulating multiply connected polygonal domains[J]. Computer and Graphics, 1993, 17(5): 563~574.
  • 9Klein Reinhard. Construction of the Constrained Delaunay Triangulation of a Polygonal Domain[M]. In CAD-Tools for Products. New York: Springer Verlag, 1996.
  • 10Amanatides John, Woo Andrew. A fast voxel traversal algorithm for ray tracing[A]. In: Proceedings of Eurographics'87 Conference, Amsterdam, 1987. 3~10.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部