摘要
提出一种RBF-Volterra级数非线性系统建模方法。利用基函数多项式(BFP)完备的非线性系统逼近能力,在基函数族单一尺度和平移联动约束下,导出RBF-Volterra级数模型;RBF-Volterra级数具有"截尾不截维"特性,对非线性强弱变化适应能力强,且结构紧凑,数值稳定性好,能效避免维数灾难问题。实例仿真说明了该方法的有效性。
A modeling approach of nonlinear system was represented with RBF-Volterra series.Using the nicer fitting ability of basis function polynomial(BFP) for nonlinear system,RBF-Volterra series was educed with limited to same discrete values of the translation parameters of basis function.Then the advantage of RBF-Volterra series was discussed,which not only has better stability and convergence rate in parameter estimation,but also has robust capability to adapt nonlinear variety and compact structure to avoid the dimension catastrophe.Finally,two examples illustrate the proposed approach is available.
出处
《系统仿真学报》
CAS
CSCD
北大核心
2011年第12期2588-2591,共4页
Journal of System Simulation