期刊文献+

RBF-Volterra级数非线性系统建模 被引量:1

Nonlinear System Modeling of RBF-Volterra Series
下载PDF
导出
摘要 提出一种RBF-Volterra级数非线性系统建模方法。利用基函数多项式(BFP)完备的非线性系统逼近能力,在基函数族单一尺度和平移联动约束下,导出RBF-Volterra级数模型;RBF-Volterra级数具有"截尾不截维"特性,对非线性强弱变化适应能力强,且结构紧凑,数值稳定性好,能效避免维数灾难问题。实例仿真说明了该方法的有效性。 A modeling approach of nonlinear system was represented with RBF-Volterra series.Using the nicer fitting ability of basis function polynomial(BFP) for nonlinear system,RBF-Volterra series was educed with limited to same discrete values of the translation parameters of basis function.Then the advantage of RBF-Volterra series was discussed,which not only has better stability and convergence rate in parameter estimation,but also has robust capability to adapt nonlinear variety and compact structure to avoid the dimension catastrophe.Finally,two examples illustrate the proposed approach is available.
出处 《系统仿真学报》 CAS CSCD 北大核心 2011年第12期2588-2591,共4页 Journal of System Simulation
关键词 非线性系统建模 基函数多项式(BFP) VOLTERRA级数 径向基Volterra级数 nonlinear system modeling basis function polynomial(BFP) volterra series radial basis function Volterra series(RBFV)
  • 相关文献

参考文献10

  • 1J R Phillips. Automated extraction of nonlinear circuit macro-models [C]//IEEE 2000 Custom Integrated Circuits Conference. USA: IEEE, 2000: 451-455.
  • 2S P Parker, F A Perry. A Discrete ARMA Model for Nonlinear System Identification [J]. IEEE Transactions on Circuits and Systems (S0098-4094), 1981: 28(3): 224-233.
  • 3R Bemardini, G Cortelazzo, G Mian. Multidimensional fast Fourier transform algorithm for signals with arbitrary symmetries [J]. IEEE Optics Soc. A(S1084-7529), 1999, 16(8): 1892-1908.
  • 4S A Billings, H L Wei. A New Class of Wavelet Networks for Nonlinear System Identification [J]. IEEE Transactions on Neural Networks (S1045-9927), 2005, 16(4): 862-874.
  • 5A J Kurdila, F J Narcowich, J D Ward. Persistency of Excitation, Identification and Radial Basis Functions [C]// Proceedings of the 33rd Conference on Decision and Control, Lake Buena Vista, FL, USA. USA: IEEE, 1994: 2273-2279.
  • 6L Yao, C C Lin. Genetic Programming Based Multi- channel Identification of Nonlinear Systems by Volterra Filters [C]// IEEE Congress on Evolutionary Computation Sheraton Vancouver Wall Centre Hotel, Vancouver, Canada. USA: IEEE, July, 2006: 2864-2873.
  • 7J S Morris, R J Carroll. Wavelet-based functional mixed models [J], Royal Statistical Society (S1467-9868), 2006, 68(2): 179-199.
  • 8S Chen, C F N Cowan, P M Grant. Orthogonal least- squares learning algorithm for radial basis function networks [J]. IEEE Trans. Neural Networks (S1045-9227), 1991, 2(2): 302-309.
  • 9H L Wei, S A Billings. A unified wavelet-based modeling framework for nonlinear system identification: The WANARX model structure [J]. Intelligence Control (S 1366-5820), 2004, 77(4): 351-366.
  • 10K Li, J X Peng, G W Irwin. A Fast Nonlinear Model Identification Method [J]. IEEE Transactions on Automatic Control (S0018-9286), 2005, 50(8): 1211-1217.

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部