摘要
手势作为一种自然的交互方式,不但方便了人与计算机的交互,而且也是对传统鼠标和键盘交互方式的一种有益补充。提出一种基于手势的虚拟环境交互方法,首先对视频采集到的手势图像进行预处理,获得手势二值图像,根据二值图像计算Zernike归一化矩,以获得手势的特征信息;然后利用BP神经网络对手势进行识别;最后根据识别的结果,驱动视点运动,实现虚拟场景的漫游。实验结果表明,该方法具有识别率高和稳定性好的优点。
Hand-gesture is a natural HCI manner.It not only facilitates the interaction between people and computers,but also provides a useful supplement on the traditional interaction as mouse and keyboard.A method on hand gesture-based interaction was proposed in virtual scene.Firstly,the binary image of hand gesture was got after image pre-processing,then zernike normalized moments was calculated to get features of hand-gesture.Finally,BP neural network was applied to hand-gesture recognition.It is successful to apply the method to walkthrough in virtual scene.The experiment results indicate that the method is high in recognition rate and stability.
出处
《系统仿真学报》
CAS
CSCD
北大核心
2011年第12期2671-2675,共5页
Journal of System Simulation
基金
国家自然科学基金(60673186)