期刊文献+

GRAPES模式中Helmhothz方程两种求解方法的对比研究 被引量:2

A Study of the Two Helmholtz Solvers in the GRAPES Model Using GCR and GMRES
下载PDF
导出
摘要 GRAPES是中国气象局自主研发的一个全球/区域分析预报系统。其模式计算方程组经过离散化之后,积分求解过程最终归结为对一个椭圆方程或Helmholtz(赫姆霍兹)方程的求解,这个求解是整个动力框架计算的核心。在目前GRAPES全球模式的准业务计算中,对于分辨率为0.5o的系统,Helmholtz方程的求解时间占到了整个模式计算时间的三分之一强。而且随着未来高分辨率模式的进一步加细,以及模式计算精度的提高,方程求解计算总量更是呈指数式增长。为此,本文分析了GRAPES模式中求解Helmholtz方程所采用的广义共轭余差法(GCR),并对比给出了利用PETSC函数库中提供的GMRES方法求解Helmholtz方程的一些初步测试结果。结果表明,采用高精度的GMRES方法可以减少模式预报偏差,改善模式预报准确度,在大规模并行计算时具有更好的可扩展性能。 GRAPES(Global and Regional Assimilation and PrEdiction System)is a new generation of NWP model in CMA (China Meteorological Administration) for the operational implementation. After the discretization of computing equations for GRAPES's model, the first calculation becomes the solution of the Helmholtz equations which is the kernel computing of the dynamic framework. The running time for solving the Helmholtz equations is more than one-third of the total cost for GRAPES-global mode at 0.5°x0.5° horizontal resolution with 38 vertical levels, and for the higher resolution model, the timecost is an exponential growth. The generalized conjugate residual method is employed to solve the 3D Helmholtz equation in the version of the GRAPES mode currently, as a contrast, another method which is based on GMRES(generalized minimal residual method)of PETSc(Portable, Extensible Toolkit for Scientific computation) is used here. The computation shows that the GMRES method with high precision can improve the forecast accuracy and has much better scalability for large-scale parallel computing.
出处 《计算机工程与科学》 CSCD 北大核心 2011年第11期65-70,共6页 Computer Engineering & Science
基金 国家863计划资助项目(2009AA01A138) 国家自然科学基金资助项目(40505023) 公益性行业(气象)科研专项资助项目(GYHY201006013)
关键词 GRAPES HELMHOLTZ方程 广义共轭余差法(GCR) 广义最小残差法(GMRES) GRAPES Helmholtz equation GCR (Generalized Conjugate Residual method) GMRES (Generalized Minimal RESidual method)
  • 相关文献

参考文献10

  • 1杨学胜,陈嘉滨,胡江林,陈德辉,沈学顺,张红亮.全球非静力半隐式半拉格朗日模式及其极区离散处理[J].中国科学(D辑),2007,37(9):1267-1272. 被引量:9
  • 2Varga R S.矩阵迭代分析:第2版=Matrix Iterative Analysis(Second Edition)-影印版[M].北京:科学出版社,2006.
  • 3Saad Y. 稀疏线性系统的迭代方法:第2版 = Iterative Meth- ods for Sparse Linear Systems ( Second Edition)-影印版[M]. 北京:科学出版社, 2009.
  • 4刘宇,曹建文.适用于GRAPES数值天气预报软件的ILU预条件子[J].计算机工程与设计,2008,29(3):731-734. 被引量:9
  • 5Balay S,Buschelman K,Eijkhout V,et al. PETSc Users Manual Revision 3.0.0[R]. Argonne National Laboratory, 2008.
  • 6HYPRE.- High Performance Preconditioners [ EB/OL]. [ 2009-08-17]. http://www, linl. gov/CASC/hypre.
  • 7Saad Y,Schultz M H. A Generalized Minimal Residual Algo- rithm for Solving Nonsymmetric Linear Systems[J]. Journalon Scientific and Statical Computing,1986(7):856- 869.
  • 8Liu Guoping, Zhao Wentao, Zhang Lilun. Parallel Helmhohz Solver for Chinese GRAPES Atmosphere Model Based onthe PETSc Tools[C]//Proc of International Symposium on Distributed Computing and Applications to Business, Engi-neering and Science, 2007 : 287-290.
  • 9Jablonowski C, Lauritzen P H, Taylor M, et al. Idealized Test Cases for the Dynamical Cores of Atmospheric GeneralCirculation Models[C]//Proc of a Proposal for the NCAR ASP 2008 Summer Colloquium.
  • 10张贺,林朝晖,曾庆存.IAP AGCM-4动力框架的积分方案及模式检验[J].大气科学,2009,33(6):1267-1285. 被引量:24

二级参考文献21

共引文献39

同被引文献15

引证文献2

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部