期刊文献+

负关联规则挖掘与特征词抽取融合的局部反馈查询扩展 被引量:2

Query Expansion of Local Feedback Based on the Fusion of Negative Association Rules Mining and Feature Terms Extraction
下载PDF
导出
摘要 针对现有信息检索系统中存在的词不匹配问题,本文提出一种基于负关联规则挖掘与特征词抽取融合的局部反馈查询扩展算法。该算法首先从前列n篇初检局部文档中抽取特征词,建立特征词库;然后,对特征词库挖掘同时含有查询词和非查询词的频繁项集和非频繁项集,由此挖掘前件是查询项的负关联规则,提取负关联规则的后件作为负关联特征词,计算负关联特征词与原查询的相关性,根据相关性在特征词库中删除负关联特征词,将余下的特征词作为最终扩展词,和原查询组合成新查询实现查询扩展。实验结果表明,该算法能有效地提高和改善信息检索性能。 Aiming at the term mismatch issues of the existing information retrieval systems, a novel query expansion algorithm of local feedback is proposed based on the fusion of negative association rules mining and feature terms extraction. Firstly, the feature terms from the top-ranked n retrieved local documents are extracted to construct the feature terms database, and the frequent itemsets and non-frequent itemsets containing original query terms and non query terms synchronously are mined in the feature terms database. And then, the negative association rules, the antecedent of which is the original query terms, are mined in frequent itemsets and non-frequent itemsets, and the consequents of the negative as sociation rules are extracted as the negative association terms, and the correlation of each negative association term and the entire original query is calculated. Finally, the terms which are the same as the negative association terms are removed from the feature terms database according to the correlation and the rest of the terms of the feature terms database are combined with the original query for query expansion. The results of the experiment show that the proposed algorithm can effectively improve and enhance the information retrieval performance.
作者 黄名选
出处 《计算机工程与科学》 CSCD 北大核心 2011年第11期144-148,共5页 Computer Engineering & Science
基金 广西教育厅科研课题(201010LX679) 广西教育学院2010年度院级重点课题(桂教院科研[2010]7号)
关键词 查询扩展 局部反馈 特征词 负关联规则 query expansion local feedback feature term negative association rule
  • 相关文献

参考文献16

  • 1黄名选,严小卫,张师超.查询扩展技术进展与展望[J].计算机应用与软件,2007,24(11):1-4. 被引量:53
  • 2Voorhees E M. The Effectiveness and Efficiency of Agglom erative Hierarchic Clustering in Document Retrieval: EPhD Thesis:[D]. Cornell University, 1986.
  • 3Furnas G W, Deerwester S, Dumais S T, et al. Information Retrieval Using a Singular Value Decomposition Model of La-tent Semantic Structure[C]//Proc of the 1lth Annual lnt' l ACM SIGIR Conf on Research and Development in Informa tion Retrieval, 1988:465- 480.
  • 4Jing Y, Croft W. An Association Thesaurus for Information Retrieval [C]//Proc of RIAO'94, 1994:146- 160.
  • 5冯运,陈治平.基于局部类别分析的查询扩展[J].计算机应用,2007,27(1):207-209. 被引量:3
  • 6李卫疆,赵铁军,王宪刚.基于上下文的查询扩展[J].计算机研究与发展,2010,47(2):300-304. 被引量:32
  • 7Salton G, Buckley C. Improving Retrieval Performance by Relevance Feedback[J]. Journal of the American Society forInformation Science, 1990, 41(4):288- 297.
  • 8Xu J, Bruce Croft W. Query Expansion Using Local and Global Document Analysis[C]//Proc of CAN SIGR Conference Retrieval, 1996:4- 11.
  • 9Cui Hang, WenJi Rong, Nie Jian-Yun,et aI. Query Expan sion by Mining User I.ogs [J]. IEEE Trans on Knowledgeand Data Engineering, 2003,15(4) :829- 839.
  • 10Zhang Chengqi, Qin Zhenxing. Associalion Based Segmen ration for Chinese Crossed Query Expansion[J]. IEEE In-teLLigent Informatics BuLletin, 2005,5(1) : 18- 25.

二级参考文献80

共引文献147

同被引文献19

  • 1蒋辉,阳小华.基于文档与搜索结果上下文的查询扩展方法[J].计算机应用,2009,29(3):852-853. 被引量:6
  • 2韩亚洪,刘永革.本体的查询与推理机制研究[J].计算机工程与应用,2005,41(9):82-85. 被引量:11
  • 3刘以安,刘强,邹晓华,王士同.基于向量内积的关联规则挖掘算法研究[J].计算机工程与应用,2006,42(21):172-174. 被引量:15
  • 4黄名选,陈燕红,张师超.基于关联规则挖掘的查询扩展模型研究[J].现代图书情报技术,2007(10):47-51. 被引量:7
  • 5Jing Yufeng,Bruce C. An association thesaurus for information Retrieval[A].United States:ACM,1994.146-160.
  • 6Xu J,Bruce C. Query expansion using local and global document analysis[A].United States:ACM,1996.4-11.
  • 7Fonseca B M,Golgher P B,Moura E S. Discovering search engine related query using association rules[J].Journal of Web Engineering,2004,(04):215-227.
  • 8Zhang Chengqi,Qin Zhenxing,Yan Xiaowei. Association-based segmentation for chinese-crossed query expansion[J].IEEE Intell Inform Bull,2005,(01):18-25.
  • 9Cui Hang,Wen Jirong,Nie Jianyun. Query expansion by mining user logs[J].IEEE Transactions on Knowledge and Data Engineering,2003,(04):829-839.doi:10.1109/TKDE.2003.1209002.
  • 10Brin S,Motwani R,Silverstein C. Beyond market baskets:generalizing association rules to correlations[A].United States:ACM,1997.265-276.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部