期刊文献+

采用动量轮及推进器的微小卫星的姿态机动控制(英文) 被引量:4

Attitude maneuver of micro-satellite using thruster plus bias momentum wheel
下载PDF
导出
摘要 提出了一种利用偏置动量轮及推进器实现大角度姿态机动控制的方法。首先建立轨道系下的卫星模型及动量轮推进器的模型,并基于该模型采用动量轮及推进器结合的反馈线性化控制方法,最后设计了大角度机动的参考轨迹。仿真和分析结果表明,文中的控制方法可以在45 s内使卫星机动40°,并在100 s内达到180°大角度,控制精度达到0.4°。可以无需对动量轮进行加减速操作而进行实时的姿态机动。不仅能满足实时性需要,同时可以避免动量轮饱和,降低能源消耗,为微小卫星姿态控制系统的工程实现提供了非常有价值的参考。 The main objective is to develop a combined control method for attitude maneuver of micro-satellite containing thruster and a single pitch bias momentum wheel.Firstly the system model relative to the orbit frame is established including satellite,bias momentum wheel as well as pulse width modulation(PWM) thruster.Based on the model,a controller using feedback linearization method combined with thruster and a bias momentum wheel is designed.Then a reference trajectory is designed for large angle maneuver.The overall simulation and analysis results show that the combined PWM thruster and bias momentum wheel control method can make the satellite maneuver 40°within 45 s and reach large angle of 180° within 100 s,and the control precision is up to 0.4°.It works well in the attitude control both for small angle and large angle maneuver.This control method meets the demand of real-time without the bias momentum wheel to slow-down and speed-up manipulation in the period of attitude maneuver.It can not only satisfy the real-time requirements,but also avoid the saturation of momentum wheel and save the finite fuel reserves.It gives valuable references for designing the attitude control systems of micro-satellite.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2011年第5期526-532,共7页 Journal of Chinese Inertial Technology
基金 南京航空航天大学基本科研业务费专项(NS2010219) 国家自然科学基金(60974107)
关键词 微卫星 姿态机动 推进器 动量轮 反馈线性化 micro-satellite attitude maneuver thruster momentum wheel feedback linearization
  • 相关文献

参考文献14

  • 1Bayat F, Bolandi H, Jalali A A. A heuristic design method for attitude stabilization of magnetic actuated satellite[J]. ActaAstronautic, 2009, 65(11): 1813-1825.
  • 2Chen M, Zhang S J, Liu F R. Combined attitude control of small satellite using one flywheel and magnetic torquers[C]// The 2nd International Symposium and Control in Aerospace and Astronautic. Shenzhen, China, ISSCAA, 2008: 1-6.
  • 3Huang W D, Zhang Y L. Rate damping control for small satellite using thruster[J]. Acta Astronautica, 2004, 55(1): 9-13.
  • 4Valdes A, Khorasani K. Dynamic neural network-based pulsed plasma thruster (PPT) fault detection and isolationfor the attitude control system of a satellite[C]// IEEE International Joint Conference on Neural Networks. Hong Kong, China, 2008: 2689-2695.
  • 5Haddi A, Alami N. Stabilization and observation of a satellite by Lyapunov's approach[J]. WSEAS Transaction on Circuits and Systems, 2006, 5(7): 1089-1096.
  • 6Radice C~ Casasco M. On different parameterization methods to analyze spacecraft attitude manoeuvres in the presence of attitude constrains[J] Aeronautical Joumal, 2007, 111(1119): 335-342.
  • 7Patel T R, Kumar K D, Behdinan K. Variable structure control for satellite attitude stabilization in elliptic orbits using solar radiation pressure[J]. Acta Astronautica, 2008, 64(2): 359-373.
  • 8吕建婷,李传江,马广富,高岱.卫星姿态调节的自适应滑模控制器设计[J].哈尔滨工业大学学报,2008,40(9):1366-1369. 被引量:1
  • 9Son J W, Lim J T. Stabilization of approximately feedback linearizable systems using singular perturbation[J]. IEEE Transactions on Automatic Control, 2008, 53(6): 1499-1053.
  • 10Fang B, Kelka A G~ On feedback linearization of underactuated nonlinear spacecraft dynamics[C]// Proceeding of 40tb IEEE Conference on Decision and Control. Orlando, Florida, USA, 2001: 3400-3405.

二级参考文献12

  • 1VADALI S R. Variable Structure Control of Spacecraft Large Attitude Maneuvers [ J]. Journal of Guidance, Control and Dynamics, 1986, 3 (9) :235 - 239.
  • 2LIANG Y W. Application of VSC reliable design to spacecraft attitude tracking [ C ]//American Control Conference. USA: [s. n. ], 2005:919 -924.
  • 3CHEON Y J. Sliding mode control of spacecraft with actuator dynamics [ J ]. Transactions on Control, Automation, and Systems Engineering, 2002, 4(2) : 169 - 174.
  • 4LIU X J, GUAN P, LIU J Z. Fuzzy sliding mode control of satellite [C]//Decision and Control and European Control Conference. Seville: [s. n. ], 2005:1970 - 1975.
  • 5HYOCHOONG B. Sliding mode control for spacecraft containing rotating wheels [ C ]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Montreal: [ s. n. ] ,2001.
  • 6JOVAN D B, LI S M. Robust adaptive variable structure control of spacecraft under control input saturation [ J ]. Journal of Guidance, Control and Dynamics, 2001, 24 (1) :14 -22.
  • 7COSTIC B T, DAWSON D M. A Quaternion - Based adaptive attitude tracking controller without velocity measurements [ C]//Conference on Decision and Control. Sydney: [ s. n.], 2000:2424 -2429.
  • 8BANIRAZI M R, JAHED MOTLAGH M R. Adaptive robust attitude tracking control of spacecraft[C]//Proceedings of the IEEE Conference on Control Applications. Toronto:[s. n.], 2005:498 -503.
  • 9BOSKOVIC J D, LI S M, MEHRA R K. Robust tracking control design for spacecraft under control input saturation[J]. Journal of Guidance, Control and Dynamics, 2004, 27(4) : 627 -633.
  • 10SIDI M J. Spacecraft dvnanlics and control[M]. London: Cambridge University Press, 1997.

同被引文献26

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部