期刊文献+

粒子群优化RBF神经网络的自适应谐波检测 被引量:1

Application of RBF neural networks based on adaptive particle swarm optimization algorithm in harmonic detection
下载PDF
导出
摘要 有源电力滤波器补偿性能与所采用的谐波检测方式有很大的依赖关系,针对现有的检测方法存在精度不高、对电网频率变化比较敏感、自适应能力不强的缺点,本文提出基于粒子群优化算法的R B F神经网络的谐波检测方法。用自适应的方法对粒子群优化算法的参数进行了调整,使其能够更好地适应复杂的非线性环境,从而可以更灵活地调节P S O算法的全局搜索能力和局部开发能力。在算法的基础上,根据已开发的系统配置和学习算法,探讨了模拟电路的实现方法,运用P S I M软件对电路进行了模拟仿真。仿真结果表明,该方法具有很好的实时性、较高的检测精度以及自适应跟踪负载电流变化的能力。 The compensating capability of active power filter has relation with the way of harmonic detection,but the existing methods of harmonic detection have some disadvantages,such as the lower harmonic precision,sensitive to the change of the power system frequency,lower self-adaptive capability.This paper put forward a method for harmonic detection based on RBF Neural Network with parameters optimized by adaptive particle swarm optimization algorithm.It can better adapt to the complex non-linear environment,more flexibility in adjusting the global search ability and local development capability.On the basis of the learning algorithm for the developed system,the realization scheme of an analog circuit of the system is discussed,in the light of PSIM software,the computer simulation studies of the circuit are done.Simulation results show the accuracy and practicability of the approach and the ability of adaptive change with load current.
出处 《自动化与仪器仪表》 2011年第6期133-136,共4页 Automation & Instrumentation
基金 甘肃省高等学校研究生导师科研资助项目(1009B-04) 甘肃省高等学校研究生导师科研项目计划资助(1009B-01)
关键词 谐波检测 粒子群优化算法 径向基函数神经网络 参数优选 harmonic detection particle swarm optimization algorithm RBF neural network parameter optimized
  • 相关文献

参考文献11

二级参考文献44

共引文献182

同被引文献14

  • 1刘玉敏,俞重远,张建忠,张晓光,杨红波,张娜,杨伯君.粒子群优化算法用于光纤布拉格光栅综合问题的研究[J].激光杂志,2005,26(4):69-70. 被引量:7
  • 2Kennedy J, Eberhart R C. Particle swarm optimization [ C ]// Proceedings of IEEE International Conference on Neural Networks. Piscataway : IEEE Press, 1995 : 1492 - 1498.
  • 3Eberhart R C, Kennedy J. A new optimizer using particle swarm theory [ C ]// Proceedings of the 6th International Symposium on Micro Machine and Human Science. Piscataway : IEEE Press, 1995:9 - 43.
  • 4Eberhart R C,Shi Y. Particle Swarm Optimization:Developments, Applications and Resources [ C ]// Proc. Congress on Evolutionary Computation. Piscataway: IEEE Press,2001:81 - 86.
  • 5Kennedy J, Eberhart R C. Swarm Intelligence [ M ]. San Francisco : Morgan Kaufmann division of Academic Press, 2001.
  • 6Natsuki Higashi, Hitoshi Iba. Particle Swarm Optimization with Gaussian Mutation[ C]//Proceedings of the Swarm Intelligence Symposium. Piscataway : IEEE Press ,2003:72 - 79.
  • 7Kennedy J. Small Worlds and Mega-Minds: Effects of Neighborhood Topology on Particle Swarm Performance [C]//Proceedings of the IEEE Congress on Evolutionary Computation. Piscataway: IEEE Press, 1999 : 1931 - 1938.
  • 8陶新民,徐晶,杨立标,刘玉.改进的多种群协同进化微粒群优化算法[J].控制与决策,2009,24(9):1406-1411. 被引量:17
  • 9徐传忠,王永初,杨冠鲁.模拟退火粒子群算法的Volterra主动噪声消除器[J].自动化与仪器仪表,2010(3):116-117. 被引量:3
  • 10石玉秋,黄玲,曹乃文,胡波.基于粒子群算法的喷洒参数优化算法[J].安徽农业科学,2010,38(13):6677-6678. 被引量:5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部