期刊文献+

时标广义指数函数

Generalized Exponential Function on Time Scales
下载PDF
导出
摘要 本文充分考虑时标的结构特征,将时标上指数函数ep的定义从p∈Crd的情形推广到p∈L1loc的情形,并讨论其运算性质和分析性质。 In this paper, fully considering the structure character of time scales we reasonably extend the expoL1 The properties of operation and analysis on the exponential nential function ep with p E Crd to the case of p EL^1loc. function is also discussed.
机构地区 贵州大学数学系
出处 《贵州科学》 2011年第2期15-17,共3页 Guizhou Science
基金 霍英于教育基金(121104) 贵州大学2010年SRT项目资助
关键词 时标 指数函数 Lebesgue-Δ测度 time scales, exponential function, Lebesgue-A measure
  • 相关文献

参考文献8

  • 1Agarwai R, Bohner M, O' Regan D, Peterson A, 2002. Dynam- ic equations on time scales a survey~J]. Computational and Applied Mathematics, 141 :1-26.
  • 2Bohner M, Peterson A, 2001. First and second order linear dynamic equations on time scales [ J ]. Difference Equations and Application, 7:767-792.
  • 3Bohner M, Peterson A, 2001. Dynamic Equation on Time Scales. An Introduction with Applications, Birkhauser, Boston[ M ].
  • 4Bryan B. Rynne P. , 2007. L2 spaces and boundary value prob- lems on time scales[J]. Math. Anal. Appl, 328:1217- 1236.
  • 5Cabada A. ,Vivero D. R. ,2006. Expression of the Lebersgue △-integral on time scales as a usual Lebesgue integral: application to the calculus of △-antiderivatives, Mathematical. and Computer Modelling[ D ]. 43 : 194-207.
  • 6Hilger S, 1988. Ein ma-kettenkalkulm it anwendung auf zentrum smannig faltigkeiten[ D]. PHD thesis Universitat Wurzburg.
  • 7刘桂珍,彭云飞,项筱玲.时标下指数函数的推广[J].贵州大学学报(自然科学版),2008,25(4):334-338. 被引量:2
  • 8j.

二级参考文献7

  • 1S. Hilger, Ein Ma-kettenkalkul mit Anwendung auf Zentrumsmannig faltigkeiten, PhD thesis Universitat Wurzburg, 1988.
  • 2M. Bohner,A. Peterson, First and second order linear dynamic equations on Time Scales, J. Differ. Eqns. Appl. 7(2001 )767 -792.
  • 3Ravi Agarwai, Martin Bohner, Donal O' Regan, Allan Peterson, Dynamic equations on Time Scales: a survey, Journal of Computational and Applied Mathematics, 141 (2002) 1 - 26.
  • 4M. Bohner and A. Peterson, Dynamic Equations on Time Scales : An Introduction with Applications, Birkhauser, Boston, 2001.
  • 5Alberto Cabada, Dolores R. Vivero, Expression of the Lebesgue A -integral on Time Scales as a usual Lebesgue integral : application to the calculus of Δ-antiderivatives, Mathematical and Computer Modelling, 43 ( 2006 ) 194 - 207.
  • 6Bryan P. Rynne, L^2 spaces and boundary value problems on time-scales, J. Math. Anal. Appl, 328 (2007)1217 - 1236.
  • 7Andreas Ruffing, Mortiz Simon, Corresponding Banach spaces on Time Scales, Journal of Comptational and Applied Mathematics, 179 (2005) 313 - 326.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部