期刊文献+

一种应变重构点插值无网格方法(SC-PIM) 被引量:3

A Strain-Constructed Point Interpolation Method(SC-PIM)
下载PDF
导出
摘要 将有限元法(FEM)和基于节点的光滑点插值方法(NS-PIM)相结合,提出一种应变重构点插值无网格方法(SC-PIM).通过引入可调参数,假设应变场为协调应变和光滑应变的线性组合,讨论了SC-PIM的收敛性、上下界特性及超收敛性. The authors presented a strain-constructed point interpolation method (SC-PIM) by combining techniques of FEM and node-based point interpolation method (NS-PIM). By introducing a parameter, we further discussed the convergence, upper bound and lower bound solution, and superconvergence under the assumption of strain field being a linear combination of compatible stains and smoothed strains from SC-PIM.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2011年第6期969-972,共4页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:J0630104 J0730101 J1030101 11072086) 教育部新世纪优秀人才支持计划项目(批准号:NCET-09-0430) 吉林大学基本科研业务费项目(批准号:201100007)
关键词 无网格方法 有限元法 点插值方法 超收敛性 meshfree methods finite element method point interpolation method superconvergence
  • 相关文献

参考文献8

  • 1Zienkiewicz O C, Taylor R L. The Finite Element Method [ M]. 5th ed. Oxford: Butterworth Heinemann, 2000.
  • 2Quek S S, LIU Gui-rong. The Finite Element Method: A Practical Course [M]. Oxford: Butterworth Heinemann, 2003.
  • 3Plan T H H, WU Chang-chun. Hybrid and Incompatible Finite Element Methods [ M]. Boca Raton: CRC Press, 2006.
  • 4LIU Gui-rong, Zhang G Y, Dai K Y, ct al. A Linearly Conforming Point Interpolation Method (LC-PIM) for 2D Solid Mechanics Problems [ J ]. International Journal of Computational Methods, 2005, 2 (4) : 645-665.
  • 5Liu G R, Zhang G Y. Upper Bound Solution to Elasticity Problems : A Unique Property of the Linearly Conforming Point Interpolation Method (LC-PIM) [J]. International Journal for Numerical Methods in Engineering, 2008, 74(7): 1128-1161.
  • 6Chen J S, Wu C T, Yoon S, et al. A Stabilized Conforming Nodal Integration for Galerkin Mesh-Free Methods [ J]. International Journal for Numerical Methods in Engineering, 2001, 50 (2) : 435-466.
  • 7Liu G R, Xu X, Zhang G Y, et al. A Superconvergent Point Interpolation Method (SC-PIM) with Piecewise Linear Strain Field Using Triangular Mesh [J]. International Journal for Numerical Methods in Engineering, 2009, 77 (10) : 1439-1467.
  • 8Timoshenko S P, Goodier J N. Theory of Elasticity [ M]. 3rd ed. New York: McGraw, 1970.

同被引文献29

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部