期刊文献+

Finsler流形间调和映射的拓扑性质

Some Topology Properties of Harmonic Map in Finsler Manifolds
下载PDF
导出
摘要 利用Finsler流形上的Chern联络,通过分析流形上距离函数的凸性,研究Finsler流形间的调和映射,得到一个从具有有限基本群Finsler流形到无焦点Finsler流形的非平凡调和映射的不存在性定理,进而讨论了一个同伦类中调和映射的存在性问题. With the help of the Chern connection in Finsler manifolds, we analyzed the convexity of distance function in a Finsler manifold, then discussed harmonic maps between two Finsler manifolds in the point of view of the topology/and obtained a nonexistence theorem about non-trivial harmonic maps from a Finsler manifold with the limited fundamental group to non-focus Finsler manifold, and studied some problems on homotopy class of mapping and got a simple existence theorem.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2011年第6期997-1000,共4页 Journal of Jilin University:Science Edition
基金 安徽省自然科学研究重点项目(批准号:KJ2008A05ZC) 安徽工业大学青年科研基金(批准号:QZ200918)
关键词 FINSLER流形 JACOBI场 调和映射 焦点 Finsler manifold Jacobi field harmonic maps focal point
  • 相关文献

参考文献10

  • 1Borisenko A A, Olin E A. The Global Structure of Locally Convex Hypersurfaces in Finsler Hadamard Manifolds [ J ]. Mathematical Notes, 2010, 87(2) : 155-164.
  • 2Gordon W B. Convex Functions and Harmonic Maps [J]. Proc American Math Society, 1972, 33(2): 433-437.
  • 3沈一兵,张彦.Finsler流形间调和映射的第2变分[J].中国科学(A辑),2003,33(6):610-620. 被引量:2
  • 4吴炳烨.整体Finsler几何[M].上海:同济大学出版社,2008.
  • 5Gulliver R. On the Variety of Manifolds without Conjugate Points [J]. Trans American Math Society, 1975, 210: 185-201.
  • 6Burstall F Z. Harmonic Maps of Finite Energy from Non-compact Manifolds [J]. J London Math Soc, 1984, 30(2) : 361-370.
  • 7MO Xiaohuan YANG Yunyan.The existence of harmonic maps from Finsler manifolds of Riemannian manifolds[J].Science China Mathematics,2005,48(1):115-130. 被引量:8
  • 8Spanier E H. Algebraic Topology [ M ]. New York: McGraw-Hill, 1966.
  • 9Bao D W, Chem S S, SHEN Zhong-nian. An Introduction to Riemannian-Finsler Geometry [ M ]. Berlin: Springer- Verlag, 2000.
  • 10MO Xiao-huan. Harmonic Maps from Finsler Manifolds [J]. Illiois J Math, 2001, 45(4) : 1331-1345.

二级参考文献11

  • 1[1]Chern S S.Riemannian Geometry as a Special Case of Finsler Geometry.Contemporary Math,Vol 196.Amer Math Soc,1996.51~58
  • 2[2]Bao D,Chern S S,Shen Z.An Introduction to Riemann-Finsler Geometry.GTM 200.New York:SpringerVerlag,2000
  • 3[3]Shen Z.Lectures on Finsler Geometry.Singapore:World Sci,2001
  • 4[5]Mo X H.Harmonic maps from Finsler manifolds.Illinois Jour Math,2001,45:1331~1346
  • 5[6]Eells J,Lemaire L.A report on harmonic maps.Bull London Math Soc,1978,10:1~68
  • 6[7]Leung P F.On the Stability of Harmonic Maps.Lect Notes Math,Vol 949.New York:Springer-Verlag,1982.122~129
  • 7[8]Hu H S,Pan Y L,Shen Y B.Harmonic maps and pinching theorem for positively curved hypersurfaces.Proc Amer Math Soc,1987,99:182~186
  • 8[9]Okayasu T.Pinching and nonexistence of stable harmonic maps.Tohoku Math J,1988,40:213~220
  • 9Xiaohuan Mo.Characterization and structure of Finsler spaces with constant flag curvature[J].Science in China Series A: Mathematics.1998(9)
  • 10Arno Deicke.über die Finsler-R?ume mit A i =0[J].Archiv der Mathematik.1953(1)

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部