期刊文献+

一类单值化问题的求解 被引量:2

Solution for a Class of Single-Value Branch Problems
下载PDF
导出
摘要 利用连续变化法和辅角原理研究广义多值函数的单值分支问题,给出了实数和复数两种情况下,其支点判定定理和单值分支显式表达式,并给出了两种特殊情形下单值分支的判定及求解方法. With the help of continuous variation method and problem for general multiple-valued function was discussed. branch explicit were shown in the two cases of R and C, so the explement principle, the single-value branch The fulcrum criterion theorem and single-value are shown those for two special states.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2011年第6期1024-1028,共5页 Journal of Jilin University:Science Edition
基金 吉林省重大科技研究专项基金(批准号:10ZDZH002)
关键词 多值解析函数 支点 单值分支 连续变化法 multiple-valued analytic function fulcrum single-value branch continuous variation method
  • 相关文献

参考文献5

二级参考文献24

  • 1郭彦平,葛渭高,董士杰.具有变号非线性项的二阶三点边值问题的两个正解[J].应用数学学报,2004,27(3):522-529. 被引量:27
  • 2刘锡平,贾梅,葛渭高.p-Laplace算子方程三点边值问题单调正解的存在性[J].吉林大学学报(理学版),2007,45(1):49-55. 被引量:10
  • 3林玉波 唐岫雯.关于初等多值函数单值分支的连续变化法[J].桂林冶金地质学院学报,1981,3.
  • 4路可见 钟寿国 等.复变函数[M].武汉:武汉大学出版社,1999,1..
  • 5II' in V A, Moiseev E I. Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects[J]. Differential Equations, 1987,23(7):803-810.
  • 6II'in V A, Moiseev E I. Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator[J]. Differential Equations, 1987,23(8):979-987.
  • 7Gupta C P. Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation[J]. J. Math. Anal. Appl., 1992,168:540-551.
  • 8Ma Ruyun. Existence of solutions of nonlinear m-point boundary value problems[J]. J. Math. Anal. Appl., 2001,256:556-567.
  • 9Ma Ruyun. Positive solutions of a nonlinear three-point boundary value problem[J]. Electronic Journal of Differential Equations., 1999,34:1-8.
  • 10Ma Ruyun. Existence theorems for a second order m-point boundary value problem[J]. J. Math. Anal. Appl., 1997,211:545-555.

共引文献5

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部