期刊文献+

人体运动异常行为监测 被引量:1

Monitoring of the Abnormal Behavior in Human Actions
下载PDF
导出
摘要 针对人体运动行为监测中离线学习开销大的缺点,提出了一种实时在线学习的多因子权值评价方式。在轨迹中心差值分布、形体倾斜角度和形体高宽比例等3个权值因子的基础上,通过这3个指标进行加权平均,获得行为量化指数Action,根据Action的值对人体行为进行判断:当取值大于2正常,低于1.5预警,小于1异常。实验结果表明,这种方式在实时性上表现优越,并克服了开销大的缺点。 The cost of monitoring human actions is very high through off-line learning. The authors propose a system to solve the problem. The system has the capacity of real-time online learning and monitoring human actions. And the system consists of three weight factors, distribution of trajectory center difference, body tilt angle and ratio of height versus width. The three indexes are weighted and averaged, the quantitative index for behavior action is obtained, then the human behavior is judged according to the value of action : when the values greater than 2, it is considered normal, less than 1.5, the warning is needed while less than 1 it is considered abnormal. The result of experiment shows that this approach is superior in performance on real-time and the shortwoming of the high cost is overcome.
出处 《西华大学学报(自然科学版)》 CAS 2011年第6期22-25,60,共5页 Journal of Xihua University:Natural Science Edition
基金 四川省教育厅自然科学重点项目(10ZA098) 四川省信号与信息处理重点实验室基金(SGXZD0101-10-1)
关键词 行为监测 计算机视觉 OPENCV behavior monitor computer vision OpenCV
  • 相关文献

参考文献8

  • 1Liu Jingen, All Saad, Shah Mubarak. Recognizing Human Actions Using Multiple Features[ C ]//2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage : IEEE,2008 : 1 - 8.
  • 2Schindler K, Gool L V. Action Snippets: How Many Frames Does Human Action Recognition Require [ C ]//2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage : IEEE, 2008 : 316 - 321.
  • 3Lv F , Nevatia R. Single View Human Action Recognition using Key Pose Matching and Viterbi Path Searching[ C ]//2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis : IEEE, 2007:236 - 243.
  • 4Ke Y, Sukthankar R , Hebert M. Efficient Visual Event Detec- tion using Volumetric Features [ C ]// Tenth IEEE International Confer- ence on Computer Vision, Beijing:IEEE,2005:244 -251.
  • 5Shechtman E, Irani M. Space-Time Behavior Based Correlation [ C]//Tenth IEEE International Conference on Computer Vision, Beijing : IEEE, 2005:354 - 361.
  • 6Niebles J C, Wang H, LI Fei-Fei. Unsupervised Learning of Human Action Categories Using Spatial - Temporal Words [ J ]. International Journal of Computer Vision ,2006,79 ( 3 ) :542 - 550.
  • 7Dollar P, Rabaud V, Cottrell G, et al. Belongieet, Behavior Recognition via Sparse Spatio-Temporal Features[ C ]//2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance. Beijing: IEEE, 2005:56 - 63.
  • 8Carlsson C, Carlsson S, Sullivan J. Action Recognitiori by Shape Matching to Key Frames [ C ]//IEEE Computer Society Workshop on Models Versus Exemplars in Computer Vision. Kauai: IEEE, 2001: 212 -217.

同被引文献18

  • 1杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 2Lara O D, Labrador M A. A survey on human activity recogni- tion using wearable sensors[J]. Communications Surveys : Tu- torials,IEEE,2013,15(3) :1192 1209.
  • 3Park C, Kim J, Choi H-J. A watch type human activity detector for the aged care[C] // 2012 14th International Conference on Advanced Communication Technology ( ICACT ). IEEE, 2012 : 648-652.
  • 4Chernbumroong S, Atkins A S, Yu H. Activity classificationusing a single wrist worn accelerometer[C]//2011 5th Interna tional Conference on Software, Knowledge Information, Indus- trial Management and Applications (SKIMA). IEEE, 2011:1 6.
  • 5Vaidehi V, Ganapathy K, Mohan N, et al. Video based automatic fall detection in indoor environment [C]//2011 International Conference on Recent Trends in Information Technology (ICRTIT). IEEE, 2011 : 1016-1020.
  • 6Bao L, Intille S S. Activity recognition from user annotated acce- leration data[M]//Pervasive computing. Springer, 2004 : 1-17.
  • 7Choi S, LeMay R, Youn J H. On-board processing of accelera tion data for reaI-time activity classification[C] // 2013 IEEE Consumer Communications and Networking Conference (CC- NC). IEEE, 2013 : 68-73.
  • 8Yang J, Wang S, Chen N, et al. Wearable accelerometer based extendable activity recognition system[C]//2010 IEEE Interna- tional Conference on Robotics and Automation (ICRA). IEEE, 2010:3641 3647.
  • 9Cortes C, Vapnik V. Support-vector networks [J]. Machine learning, 1995,20(3) : 273 297.
  • 10Varkey J P, Pompili D, Wails T A. Human motion recognition using a wireless senso:based wearable system[J]. Personal and Ubiauitous Computing,2012,16(7) :897 910.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部