期刊文献+

双阈值灰度归类背景重构算法

Two Thresholds Pixel Intensity Classification for the Background Reconstruction
原文传递
导出
摘要 针对背景差法背景重构的难点,提出了一种改进的像素灰度归类的背景重构算法。该方法假定"背景在图像序列中总是最常被观测到",根据帧间灰度差和累计帧差和划分灰度类,对划分的灰度区间执行合并操作,最后选择出现频率最大的灰度类作为该像素的背景值。仿真结果表明,该算法有效地避免了混合现象,当场景本身存在缓慢变化时也能很好地构建出背景,从而有利于后续的运动目标检测、识别和跟踪。 The background subtraction is an important method to detect the moving objects, the difficulty in which is the background reconstruction. Therefore an improved background reconstruction algorithm based on pixel intensity classification is proposed. According to the hypothesis that the background pixel intensity always appears in an image sequence with maximum probability, the adjacent frames will be classified as the same or different classes of intensity based on the frame difference and frame difference accumulation, and then merging procedure is run to classify the classes, finally intensity classes with maximum appearance probability are selected as the background pixel intensity values, Simulations results show that the algorithm could affectively avoid moving mixture and well reconstruct the background of vary scene. It also has quick speed, lower store space, and strong robust.
出处 《科技导报》 CAS CSCD 北大核心 2011年第32期43-46,共4页 Science & Technology Review
基金 国家自然科学基金青年科学基金项目(50908019)
关键词 灰度归类 背景重构 运动检测 pixel intensity classification background reconstruction motion detection
  • 相关文献

参考文献10

  • 1Long W, Yang Y. Stationary background generation: An ahernative to the difference of two images [J]. Pattern Recognition, 1990; 23 (12): 1351- 1359.
  • 2Gloyer B, Aghajan H K, Siu K Y, et al. Video-based freeway monitoring system using reeursive vehicle tracking[C]//Proceedings of IS & T-SPIE Symposium on Electronic Imaging: Image and video processing. Bellingham: Society of Photo-Optical Instrumentation Engineers, 1995, 2421: 173-180.
  • 3Kornprobst P, Deriche R, Aubert G. Image sequence analysis via partial difference equations [J]. Journal of Mathematical Imaging and Vision, 1999, 11(1): 5-26.
  • 4Cucchiara R, Piccardi M, Prati A. Detecting moving objects, ghosts, and shadows in video streams [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10): 1337-1342.
  • 5Hou Z Q, Han C Z. A background reconstruction algorithm based on pixel intensity classification in remote video surveillance system [C]// International Society of Information Fusion. Proceedings of the Seventh International Conference on Information Fusion. Fairborn: International Society of Information Fusion, 2004: 754-759.
  • 6肖梅,韩崇昭.基于在线聚类的背景减法[J].模式识别与人工智能,2007,20(1):35-41. 被引量:9
  • 7Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking [C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE, 1999: 246-252.
  • 8Lee D S, Hull J J, Erol B. A Bayesian framework for Gaussian mixture background modeling [C]//Proceedings of 2003 International Conference on Image Processing[C]. Barcelona: Institute of Electrical and Electronics Engineers Computer Society, 2003: 973-979.
  • 9Zivkovic Z, van der Heijden F. Recursive unsupervised learning of finite mixture models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 651-656.
  • 10Toyama K, Krumm J, Brumitt B, et al. Wallflower: Principles and practice of background maintenance [C]//Proceedings of the 1999 7th IEEE International Conference on Computer Vision. Piscataway: Institute of Electrical and Electronics Engineers Inc, 1999.

二级参考文献17

  • 1Talukder A, Goldberg S, Matthies L, et al. Real-Time Detection of Moving Objects in a Dynamic Scene from Moving Robotic Vehicles// Proc of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, USA, 2003, Ⅱ:1308-1313
  • 2Meier T, Nagan K N. Automatic Segmentation of Moving Objects for Video Object Plane Generation. IEEE Trans on Circuits and Systems for Video Technology, 1998, 8(5) : 525-538
  • 3Long W, Yang Y. Stationary Background Generation: An Alternative to the Difference of Two Images, Pattern Recognition,1990, 23(12):1351-1359
  • 4Gloyer B, Aghajan H K, Siu K Y, et al. Video-Based Freeway Monitoring System Using Recursive Vehicle Tracking. Proc of the SPIE, 1995, 2421:173-180
  • 5Kornprobst P, Deriche R, Aubert G. Image Sequence Analysis via Partial Differential Equations. Journal of Mathematical Imaging and Vision, 1999, 11(1): 5-26
  • 6Cucchiara R, Grana C, Piccardi M, et al. Detecting Moving Objects, Ghosts, and Shadows in Video Streams. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(10): 1337-1342
  • 7Hou Zhiqiang, Han Chongzhao. A Background Reconstruction Algorithm Based on Pixel Intensity Classification in Remote Video Surveillance System// Proc of the 7th International Conference on Information Fusion. Stockholm, Sweden, 2004:754-759
  • 8Wren C R, Azarbayejani A, Darrell T, et al. Pfinder: Real-Time Tracking Of the Human Body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785
  • 9Stauffer C, Grimson W E L. Adaptive Background Mixture Models for Real-Time Tracking // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, USA, 1999, II : 246-252
  • 10Javed O, Shafique K, Shah M. A Hierarchical Approach to Robust Background Subtraction Using Color and Gradient Information//Proc of iEEE Workshop on Motion and Video Computing. Orlando, USA, 2002:22-27

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部