期刊文献+

基于混合策略机制的人工鱼群算法 被引量:3

Artificial fish-school algorithm based on hybrid strategy mechanism
下载PDF
导出
摘要 针对人工鱼群算法在处理多峰函数问题时存在一部分人工鱼处于漫无目的的随机移动、易陷入"早熟收敛"情况造成的收敛速度减慢的缺点,提出了一种基于混合策略机制的人工鱼群算法。它借鉴群体位置方差的早熟判断机制,把云发生器产生的杂交和变异算子引入到该算法中,为减少算法计算量,而采用耗散的人工鱼群算法结构。实验表明:该算法比只有一个适应值的人工鱼群算法具有更快的收敛速度。且具有很强的避免局部极小能力,其性能远远优于单一优化方法。 Artificial fish swarm algorithm for multi-modal function in dealing with the issue as part of the artificial fish in the presence of random aimlessly move easily into a "premature convergence" situation due to the shortcomings of slow convergence rate,a mechanism based on the artificial hybrid strategy fish algorithm.It draws on the variance of the early groups to determine the location mechanisms to cloud conversion and mutation operators are introduced into the algorithm,Experiments show that the algorithm is only one fitness value than the artificial fish school algorithm has faster convergence speed.And has a strong ability to avoid local minimum,its performance is far superior to the single optimization method.
出处 《中南林业科技大学学报》 CAS CSCD 北大核心 2011年第10期193-197,共5页 Journal of Central South University of Forestry & Technology
关键词 人工鱼群算法 变异算子 云模型 artificial fish-school algorithm mutation operator cloud model
  • 相关文献

参考文献7

  • 1李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38. 被引量:884
  • 2Wilson S W. The animal path to AI[C]//Proceedings of the 1st In-temational Conference on the Simulation of Adaptive Behavior. Cambridge: MIT Press, 1991.
  • 3Jefrey D. Animals and what they can tell us[J].Trends in Cognitive Sciences, 1998, 2(2): 60-67.
  • 4Bonabeau E, Theraulaz G. Swarm smarts[J]. Scientific A-merican, 2000, 282(3): 72-79.
  • 5Storn R, Price K. Differential evolution-a simple and efficient adaptire scheme for global optimization over continuous spaces[J]. Berkeley: International Computer Science Institute, 1995.
  • 6李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1246
  • 7Yoshida H, Kawata K, FuKuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. IEEE Transac- tions on Power Systems, 2000,15(4):1232-1239.

二级参考文献6

  • 1李德毅.发现状态空间理论[J].小型微型计算机系统,1994,15(11):1-6. 被引量:25
  • 2戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.
  • 3李德毅,计算机智能接口与智能应用论文集,1993年
  • 4吴国富,实用数据分析方法,1992年
  • 5李中夫,模糊系统与数学,1987年,1卷,1期,1页
  • 6李德毅

共引文献2121

同被引文献27

  • 1郑小霞,钱锋.一种改进的微粒群优化算法[J].计算机工程,2006,32(15):25-27. 被引量:23
  • 2张梅凤,邵诚,甘勇,李梅娟.基于变异算子与模拟退火混合的人工鱼群优化算法[J].电子学报,2006,34(8):1381-1385. 被引量:82
  • 3KRISHNANAND K N, GHOSE D. Theoretical foundations for ren- dezvous of glowworm-inspired agent swarms at multiple locations [ J]. Robotics and Autonomous Systems, 2008, 56(7): 549 -569.
  • 4GONG Q Q, ZHOU Y Q, YANG Y. Artificial glowworm swarm op- timization algorithm for solving 0-1 knapsack problem [ JJ. Ad- vanced Materials Research, 2011, 144: 166-171.
  • 5KRISHNANAND K N, GHOSE D. Chasing multiple mobile signal sources: a glowworm swarm optimization approach [ C]// Proceed- ings of the Third Indian International Conference on Artificial Intelli- gence. Piscatawav: IEEE Press. 2007:1308-1327.
  • 6HUANG Z X, ZHOU Y Q. Using glowworm swarm optimization al- gorithm for clustering analysis [ J]. Journal of Convergence Informa- tion Technology, 2011, 6(2): 78-85.
  • 7YANG Y, ZHOU Y Q. Glowworm swarm optimization algorithm for solving numerical integral [ C]// Communications in Computer and Information Science. Berlin: Springer, 2011, 134: 389-394.
  • 8LAN K-T, LAN C-H. Notes on the distinction of Gaussian and Cauchy mutations [ C]// Proceedings of the Eighth International Conference on InteUigent Systems Design and Applications. Piscat- away: IEEI Press, 2008:272 -277.
  • 9曲良东,何登旭,黄勇.一种新型的启发式人工鱼群算法[J].计算工程,2011,37(17):140-142.
  • 10郭德龙,周永权.改进进化策略求解复杂化学方程根的研究[J].计算机与应用化学,2008,25(3):289-292. 被引量:6

引证文献3

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部