期刊文献+

求解半线性椭圆问题的牛顿-瀑布型两层网格法 被引量:3

A NEWTON-CASCADIC TWO-LEVEL METHOD FOR SEMILINEAR ELLIPTIC PROBLEMS
原文传递
导出
摘要 选取一对合适的步长使用中心差分格式离散半线性椭圆问题形成粗网格和细网格,使用三次样条插值算子将粗网格上高精度近似解插值到细网格为其提供初始值,结合牛顿法提出了牛顿-瀑布型两层网格法.数值实验表明该算法具有稳健性强、计算效率高的优点. Coarse grid and fine grid are given by using a pair of step length discrete semilinear elliptic problems basin on central difference format. A initial value on fine grid is given by using cube spline interpolation from the high precision approximate value on coarse grid. A newton-cascadic two-level method is designed by combining newton method. The numerical experiment results show that the new method is more efficient and robust.
出处 《数值计算与计算机应用》 CSCD 北大核心 2011年第4期315-320,共6页 Journal on Numerical Methods and Computer Applications
基金 国家自然基金(11161014 11161020) 云南省自然科学基金(2008CD186) 广西科学研究与技术开发计划项目(桂科基0731018) 红河学院硕博项目(XJ1S0925)
关键词 半线性椭圆问题 三次样条插值 牛顿-瀑布型两层网格法 semilinear elliptic problems cube spline interpolation newton-cascadictwo-level method
  • 相关文献

参考文献9

二级参考文献24

  • 1Zhong-ci SHI~1 Xue-jun XU~(1+) Yun-qing HUANG~2 ~1 LSEC,Institute of Computational Mathematics,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100080,China,~2 Hunan Key Laboratory for Computation and Simulation in Science and Engineering,Institute for Computational and Applied Mathematics,Xiangtan University,Xiangtan 411105,China.Economical cascadic multigrid method (ECMG)[J].Science China Mathematics,2007,50(12):1765-1780. 被引量:14
  • 2石钟慈,许学军.A new cascadic multigrid[J].Science China Mathematics,2001,44(1):21-30. 被引量:1
  • 3Zhong-ci Shi, Xue-jun Xu (State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics, Chinese Academy of Sciences, Beijing 100080, China).CASCADIC MULTIGRID FOR PARABOLIC PROBLEMS CASCADIC MULTIGRID FOR PARABOLIC PROBLEMS[J].Journal of Computational Mathematics,2000,18(5):551-560. 被引量:18
  • 4刘伟,王智峰.半线性椭圆方程的一个新的双重网格差分算法[J].山东大学学报(理学版),2005,40(6):39-43. 被引量:2
  • 5[1]Deuflhard P. Cascadic conjugate gradient methods for clliptic partial differential equations[A]. Proceed ings of DDM 7[C]. Providence:AMS, 1994,29~42.
  • 6[2]Bornemann F and Deuflhard P. The cascadic multigrid methodfor elliptic probeems[J]. Numer. Math,1996,75:135~152.
  • 7[3]Shi Z C and Xu X J. A new cascadic multigrid[J]. Science in China(A). 2001,44:21~30.
  • 8[4]Braess D, Dahmen W. A cascadic multigrid algorithm for the Stokes equations[J]. Numer. Math,1999,82:179~192.
  • 9[5]Huang Y Q. Multilevel successive iteration methods for elliptic problems[A]. Workshop on MG[C]. 湘潭:湘潭大学出版社,2000,31~40.
  • 10[6]Timmermann G. A cascadic multigrid algorithm for semilinear elliptic problems[J]. Numer. Math,2000,86 : 717~713.

共引文献61

同被引文献30

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部