期刊文献+

基于AIC方法的切换神经网络模型设计

Design of switched neural networks model based on AIC method
下载PDF
导出
摘要 将切换系统设计中的切换思想与神经网络相结合,构建了切换神经网络模型.根据模糊C均值(FCM)聚类方法将样本数据分为多组训练数据,每组数据对应训练一个单一神经网络模型,再利用赤池信息准则(AIC)制定相应的切换规则.根据输入数据特性,选择单一网络或多网络组合的输出作为模型输出,从而达到函数逼近目的.本模型更好地利用了各个子网络在特定区域具有较高逼近精度的特点.仿真结果表明,切换神经网络模型有较高的逼近精度. The switched neural networks model is constructed by combining neural networks with the idea of the switched system.The sample data are classified into groups of training data in terms of fuzzy C-means(FCM) clustering method,and each of them is used to train a sub-neural network model.The switching rule which determines the form of model′s output is established according to Akaike Information Criterion(AIC).According to the characteristics of input data,the function approximation is achieved by choosing the output of single neural network or the combined multiple neural networks as the model output.The sub-neural network is of high approximate precision in specified regions,which is used efficiently.Finally,the simulation results demonstrate the high approximate accuracy of the switched neural networks.
作者 连捷 张凯
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2011年第6期890-895,共6页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(61004040)
关键词 切换神经网络 AIC FCM聚类 switched neural networks AIC FCM clustering
  • 相关文献

参考文献14

  • 1ZHAO Jun, HILL D J. On stability, and L2-gain and H∞ control for switched systems [J]. Automatica, 2008, 44(5) :1220-1232.
  • 2LIAN Jie, ZHAO Jun. Output feedback variable structure control for a class of uncertain switched systems [J]. Asian Journal of Control, 2009, 11(1) : 31-39.
  • 3付主木,费树岷,龙飞.一类线性切换系统H_∞状态反馈控制:LMI方法[J].控制与决策,2006,21(2):197-200. 被引量:10
  • 4HANSEN L K, SALAMON P. Neural network ensembles [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10):993-1001.
  • 5ZHOU Zhi-hua, WU Jian-xin, TANG Wei. Ensembling neural networks: Many could be better than all [J]. Artificial Intelligence, 2002, 137(1-2) : 239-263.
  • 6SRIDHAR D V, SEAGRAVE R C, BARTLETT E B. Process modeling using stacked neural networks [J]. AIChE Journal, 1996, 42(9) :2529-2539.
  • 7ISLAM M M, YAO Xin, MURASE K. A constructive algorithm for training cooperative neural network ensembles [J]. IEEE Transactions on Neural Networks, 2003, 14(4) :820-834.
  • 8YU Lean, LAI Kin-keung, WANG Shou-yang. Multistage RBF neural network ensemble learning for exchange rates forecasting[J]. Neuroeomputing, 2008, 71(16-18) :3295-3302.
  • 9ZHAO Zhi-ye, ZHANG Yun, LIAO Hong-jian. Design of ensemble neural network using the Akaike information criterion[J]. Engineering Applications of Artificial Intelligence, 2008, 21(8) :1182-1188.
  • 10熊智华,王雄,徐用懋.一种利用多神经网络结构建立非线性软测量模型的方法[J].控制与决策,2000,15(2):173-176. 被引量:14

二级参考文献12

  • 1聂宏,赵军.一类线性切换系统具有H_∞性能指标的二次稳定[J].控制理论与应用,2004,21(2):189-194. 被引量:8
  • 2Liberzon D,Morse A S.Basic Problems in Stability and Design of Switched Systems[J].Control Systems Magazine,1999,19(5):59-70.
  • 3Agrachev A A,Liberzon D.Lie-algebraic Stability Criteria for Switched Systems[J].SIAM J Control Optimize,2001,40(1):253-269.
  • 4Sun Z,Ge S S,Lee T H.Controllability and Reachability Criteria for Switched Linear Systems[J].Automatica,2002,38(5):775-786.
  • 5Shorten R N,Narendra K S,Mason O.A Result on Common Quadratic Lyapunov Functions[J].IEEE Trans on Automatic Control,2003,48(1):618-621.
  • 6Xie G,Wang L.Controllability and Stabilizability for Switched Linear Systems[J].Systems and Control Letters,2003,48(2):135-155.
  • 7Sun Z.A Robust Stabilizing Law for Switched Linear Systems[J].Int J of Control,2004,77(4):389-398.
  • 8Doyle J,Glover K,Khargonekar P,et al.State-space Solution to Standard H∞ and H2 Control Problem[J].IEEE Trans on Automatic Control,1989,34(8):831-842.
  • 9Petersen I R,Hollot C V.A Riccati Equation Approach to the Stabilization of Uncertain Linear Systems[J].Automatica,1986,22(4):397-411.
  • 10崔伟东,周志华,李星.神经网络VC维计算研究[J].计算机科学,2000,27(7):59-62. 被引量:3

共引文献268

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部