期刊文献+

带递归的模糊感知器有限收敛性

Finite convergence for recurrent fuzzy perceptron
下载PDF
导出
摘要 模糊感知器的主要功能是通过权值的学习来判别样本所属的类别.对一种基于模糊逻辑运算的带递归的模糊感知器进行了研究,其网络结构类似于内部运算基于加法-乘法的传统感知器,并加入了动态递归项.设定网络的初始权值均为常数0,证明了若训练样本的输入向量维数为2,在样本模糊可分条件下,学习算法有限收敛,即有限步后权值的训练停止;若训练样本的输入向量维数大于2,在稍强的条件下,学习算法也有限收敛. The main function of fuzzy perceptron is to discriminate which categories the samples are in by weight learning.An algorithm for a recurrent fuzzy perceptron based on fuzzy logic is presented,and the network structure of the recurrent fuzzy perceptron is similar to traditional perceptron based on addition-production,and the dynamic recursion term is added.Initial weights of network are set to be constant zero,in the case where the dimension of the input vectors is two and the training examples are separable,its finite convergence is proved,i.e.,the training procedure for the network weights will stop in finite steps,and when the dimension is greater than two,stronger conditions are needed to guarantee the finite convergence.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2011年第6期933-936,共4页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(1087122010926144)
关键词 模糊感知器 递归 有限收敛性 模糊可分 fuzzy perceptron recurrent finite convergence fuzzily separable
  • 相关文献

参考文献8

  • 1LI L, YANG J, LIU Y, et al. Finite convergence of a fuzzy delta rule for a fuzzy perceptron [J]. Neural Network World, 2008, 18(6):459-467.
  • 2CHEN J L, CHANG J Y. Fuzzy perceptron learning and its application to classifiers with numerical data and linguistic knowledge [J]. IEEE Transactions on Fuzzy Systems, 2000, 8(6) : 730-745.
  • 3WU W, LI L, YANG J, etal. A modified gradient- based neuro-fuzzy learning algorithm and its convergence [ J ]. Information Scienees, 2010, 180(9) : 1630-1642.
  • 4MITRA S, PAL S K. Fuzzy multi-layer perceptron, infereneing and rule generation [J]. IEEE Transactions on Neural Networks, 1995, 6(1) .. 51-63.
  • 5PAL S K, MITRA S. Multi-layer perceptron, fuzzy sets, and classification[J]. IEEE Transactions on Neural Networks, 19 9 2, 3 ( 5 ) : 6 8 3- 6 9 7.
  • 6WU W, SHAO Z Q. Convergence of online gradient methods for continuous perceptrons with linearly separable training patterns [J]. Applied Mathematics Letters, 2003, 16(7) :999-1002.
  • 7邵郅邛,吴微,杨洁.Finite Convergence of On-line BP Neural Networks with Linearly Separable Training Patterns[J].Journal of Mathematical Research and Exposition,2006,26(3):451-456. 被引量:1
  • 8YANG J, WU W, SHAO Z Q. A new training algorithm for a fuzzy perceptron and its convergence [C]// ISNN2005, Lecture Notes in Computer Science. Berlin : Springer, 2005 : 609-614.

二级参考文献4

  • 1GORI M,MAGGINI M.Optimal convergence of on-line backpropagation[J].IEEE Tran.Neural Networks,Volume:7,Issue:1,1996,251-154.
  • 2ROSENBLATT F.Principles of Neurodynamics[M].Spartan,New York,1962.
  • 3WIDROW B,HOFF M E.Adaptive Switching Circuits[M].in J.A.Anderson & E.Rosenfeld,Neurocomputing:foundations of research,The MIT Press,Cambridge,MA,1988.
  • 4WU Wei,SHAO Z.Convrgence of Online Gradient Methods for Continuous perceptrons with Linearly Separable Trainin Patterns[J].Appl.Math.Left.,Volume:16,Issue:7,October,2003,pp.999-1002.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部