摘要
利用算子分块方法讨论了使用广义逆表示幂等算子的问题.证明了Hilbert空间上幂等算子A(BA)+B成为正交投影的充要条件是PB*B=B*BP(这里A+表示A的Moore-Penrose逆),其中PB*B|R(P)是R(P)上的可逆算子,PA|R(A*B*)是R(A*B*)上的可逆算子.得出幂等算子P能表示成形如A(BA)1B的形式当且仅当PAA*=AA*P*,正交投影P能表示成形如A(BA)+B的形式当且仅当PAA*=AA*P.
By using operator block techniques,the representations of idempotent operators are discussed.It is proved that the necessary and sufficient condition for the operator A(BA)+ B on a Hilbert space to be an orthogonal projection is that PB*B=B*BP,where PB*B|R(P) is an invertible operator on R(P),and PA|R(A*B*) is an invertible operator on R(A*B*)(A+ denote the Moore-Penrose inverse of A).It is also proved that an idempotent operator P can be represented as the form A(BA)+ B if and only if PAA*=AA*P*,and an orthogonal projection P can be represented as the form A(BA)+ B if and only if PAA*=AA*P.
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第6期10-13,共4页
Journal of Shaanxi Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(11171197
11001159)
中央高校基本科研业务费专项资金项目(GK201002012
GK200902049)