期刊文献+

广义逆在幂等算子表示中的应用 被引量:2

Application of generalized inverse to the representations of idempotent operators
下载PDF
导出
摘要 利用算子分块方法讨论了使用广义逆表示幂等算子的问题.证明了Hilbert空间上幂等算子A(BA)+B成为正交投影的充要条件是PB*B=B*BP(这里A+表示A的Moore-Penrose逆),其中PB*B|R(P)是R(P)上的可逆算子,PA|R(A*B*)是R(A*B*)上的可逆算子.得出幂等算子P能表示成形如A(BA)1B的形式当且仅当PAA*=AA*P*,正交投影P能表示成形如A(BA)+B的形式当且仅当PAA*=AA*P. By using operator block techniques,the representations of idempotent operators are discussed.It is proved that the necessary and sufficient condition for the operator A(BA)+ B on a Hilbert space to be an orthogonal projection is that PB*B=B*BP,where PB*B|R(P) is an invertible operator on R(P),and PA|R(A*B*) is an invertible operator on R(A*B*)(A+ denote the Moore-Penrose inverse of A).It is also proved that an idempotent operator P can be represented as the form A(BA)+ B if and only if PAA*=AA*P*,and an orthogonal projection P can be represented as the form A(BA)+ B if and only if PAA*=AA*P.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第6期10-13,共4页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11171197 11001159) 中央高校基本科研业务费专项资金项目(GK201002012 GK200902049)
关键词 幂等算子 分块算子矩阵 MOORE-PENROSE逆 idempotent block-operator matrix Moore-Penrose inverse
  • 相关文献

参考文献10

  • 1Cerny A. ,Characterization of the oblique projector U (VU)+ ger V with application to constrained least squares[J]. Linear Algebra and its Applications, 2009, 431: 1564-1570.
  • 2Du Hongke, Yao Xiyan, Deng Chunyuan. Invertibility of linear combinations of two idempotents[J]. Proceed- ing of the American Mathematical Society, 2006, 134:1451-1457.
  • 3Chen Yanni, Du Hongke, Zhang Haiyan. Path connec- tivity of idempotents on a Hilbert space[J].Proceeding of the American Mathematical Society, 2008, 136.- 3483-3492.
  • 4Baksalary J K, Baksalary O M. Idempoteney of linear combinations of two idempotency matriees [J]. Linear Algebra and its Applications, 2000, 321: 3-7.
  • 5Ptak V. Extremal operators and oblique projeetions[J]. Ceskoslovenskg Akademie Ved. Casopis Pro Pestovgni Matematiky, 1985, 110: 343-350.
  • 6Koliha J J, Rakoeevic V. The nullity and rank of linear combinations of idempotent matrices[J]. Linear Alge- bra and its Applications, 2006, 418(1) : 11-14.
  • 7Deng Chunyuan. On the idempotent solutions of a kind of operator equations[J].ISRN Applied Mathematics, 2011, 846165(1-11).
  • 8王洁,张海燕,吉国兴.两个算子乘积的一种广义逆序律[J].陕西师范大学学报(自然科学版),2010,38(4):13-17. 被引量:6
  • 9Cvetkovi e-Ili, Dragana S, Deng Chunyuan. The Drazin invertibility of the difference and the sum of two idemp- otent operators[J]. Journal of Computational and Ap- plied Mathematics, 2010, 233(8) : 1717-1722.
  • 10Campbell S L, Meyer C D. Generalized inverses of lin- ear transformations [M]. Dover: Dover Publications, 1991:10-18.

二级参考文献8

  • 1Greville T N E. Note on the generalized inverse of a matrix product[J]. SIAM Review, 1966, 8(4) :518-521.
  • 2Izumino S. The product of operators with closed range and an extension of the reverse order law[J]. Tohoku Mathematical Journal, 1982, 34(1): 43-52.
  • 3Xiong Zhiping, Zheng Bing. The reverse order laws for { 1,2,3 }- and { 1,2,4 }-inverses of a two-matrix product[J]. Applied Mathematics Letters, 2008, 21 (7): 649-655.
  • 4Djordjevic D S, Dincic N C. Reverse order law for the Moore-Penrose inverse [J]. Journal of Mathematical Analysis and Applications, 2010, 361(1):252-261.
  • 5Djordjevic D S. Further results on the reverse order law for generalized inverses [J]. SIAM Journal on Matrix Analysis and Applications, 2007,29(4): 1242-1246.
  • 6Wang Minghui, Wei Musheng, Jia Zhijiang. Mixed-type reverse-order law of (AB)^(13)[J].Linear Algebra and its Applications, 2009,430 : 1691-1699.
  • 7Wei Musheng, Guo Wenbin. Reverse order laws for least squares g-inverses and minimum norm g-inverses of products of two matrices [J]. Linear Algebra and its Applications, 2002,342 : 117-132.
  • 8杜鸿科,陆建明,高桂宝.包含广义逆的算子乘积的谱[J].系统科学与数学,2009,29(2):184-190. 被引量:2

共引文献5

同被引文献2

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部