期刊文献+

一类非局部退化反应扩散方程组解的存在性 被引量:3

Existence for a Class of Degenerate Reaction-diffusion Equations with Nonlocal Source
下载PDF
导出
摘要 讨论了一类退化的具有非局部项的非线性反应扩散方程组解的存在性.首先利用了正则化方法证明正则问题解的存在性,进而证明了非线性反应扩散方程组的古典解的存在性;其次利用上下解方法来解决非线性反应扩散方程组解的整体存在,针对参数所满足的条件不同来构造不同结构的上解,从而得到了方程组解的整体存在条件. The existence for a class of degenerate nonlinear reaction-diffusion equations with nonlocal source was investigated.Firstly,the existence of the solution of the regularization equations with the regularization method,and the existence of classical solution of the reaction-diffusion equations were proved.Secondly,by making use of super and low solution method,the global existence for the nonlinear reaction-diffusion equations was solved.Following the conditions for the parameter to construct different structures of the super solutions of the equations,the global existence conditions of the solutions of the equations were obtained.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2011年第4期5-9,27,共6页 Journal of Zhengzhou University:Natural Science Edition
关键词 古典解 正则化 上解 整体存在性 classical solution regularization super solution global existence
  • 相关文献

参考文献8

  • 1Galaktionov V A, Kurdyumov S P, Samarski A A. A parabolic system of quasilinear equations ( Ⅱ ) [ J ]. Differential Equations, 1985,21 : 1544 - 1559.
  • 2Mu Chunlai, Su Ying. Global existence and blow-up for a quasilinear degenerate parabolic system in a cylinder[ J ]. Appl Math Lett,2001,14(6) :715 -723.
  • 3吴定平,李玉环,崔泽建.一类耦合退化抛物方程组在有界区域中的爆破(英文)[J].四川大学学报(自然科学版),2005,42(2):229-233. 被引量:1
  • 4Deng Weibing, Duan Zhiwei, Xie Chunhong. The blow-up rate for a degenerate parabolic equation with a non-local source [ J ]. Math Anal Appl,2001, 264(2) :577 -597.
  • 5Duan Zhiwei, Deng Weibing, Xie Chunhong. Uniform blow-up profile for a degenerate parabolic system with non-local source [ J ]. Computers & Math Appl,2004,47 (6/7) :977 - 995.
  • 6Deng Weibing, Li Yuxiang, Xie Chunhong. A nonlinear degenerate parabolic system with non-local source and crosswise-diffusion [ J ]. Z Angew Math Phys ,2003 ,54 (3) :503 - 516.
  • 7Rossi J D, Wolanski N. Blow-up vs. global existence for a semilinear reaction-diffusion system in a bounded domain [ J ]. Comm Partial Diff Eq, 1995,20 ( 11 ) : 1991 - 2004.
  • 8杨明.Global existence and blow up of a degenerate parabolic system[J].Journal of Southeast University(English Edition),2003,19(4):427-431. 被引量:2

二级参考文献13

  • 1Chen H W. Global existence and blow-up for a nonlinear reaction-diffusion system[J]. J. Math. Anal. Apl, 1997, 212:481-492.
  • 2Escobedo M, Herrero M A. Boundedness and blow-up for a semilinear reaction-diffusion system[J]. J. Diff. Eq, 1991, 89:176-202.
  • 3Escobedo M, Herrero M A. A semilinear parabolic system in a bounded domain[J]. Ann. di Math. Pura and Appl, 1993, CLXV:307-315.
  • 4Wang L W. The blow-up for weakly coupled reaction diffusion systems[J]. Proceeding AMS, 2000, 129:89-95.
  • 5Zheng S N. Global existence and global non-existence of solutions to a reaction-diffusion system[J]. Nonlinear Analysis TMA, 2000, 39:327-340.
  • 6Rossi J D, Wolanski N. Blow-up versus global existence for a semilinear reaction diffusion system in a bounded domain[J]. Comm. DE, 1995, 20:1991-2004.
  • 7Galaktionov V A, Kurdymov S P, Samarskii A A. On a parabolic system of quasilinear equations (I)[J]. Differential Equations (In Russian) 1983, 19:2123-2140.
  • 8Galaktionov V A. On a parabolic system of quailinear equations (II)[J]. Differential Equations (In Russian) 1985, 2:1544-1559.
  • 9Mu C L, Su Y. Global existence and blow-up for a quasilinear degenerate parabolic system in a cylinder[J]. Appl. Math. Letters, 2001, 14:715-723.
  • 10Sacks P E. Global behavior for a class of nonlinear evolution equations[J]. SIAM J. Math. Anal, 1985, 16:223-250.

共引文献1

同被引文献14

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部