期刊文献+

带负顾客的GI/Geom/1工作休假排队 被引量:7

The GI/Geom/1 Queue with Negative Customers and Working Vacations
下载PDF
导出
摘要 考虑带负顾客的GI/Geom/1工作休假排队.负顾客一对一抵消正在服务的正顾客(若有),若系统中无正顾客,到达的负顾客自动消失,负顾客不接受服务.服务规则为先到先服务.工作休假策略为空竭服务多重工作休假.用矩阵几何解方法,求得到达前夕系统队长的稳态分布、队长分布的概率母函数及平均队长. A GI/Geom/1 queue with negative customers and working vacations was discussed.Negative customers removed positive customers only one by one at the tail(if present).When a negative customer arrived,if the system was empty,it would disappear.Negative customers need no services.The serve rule was first come first served.The working vacation policy was exhaustive and multiple working vacations.By using matrix-geometric solution,the steady-state distributions were obtained for the number of customers in the system at arrival epochs.And the generating function of distributions and the average value of the number of customers were obtained.
机构地区 燕山大学理学院
出处 《郑州大学学报(理学版)》 CAS 北大核心 2011年第4期28-32,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 河北省高等学校科学技术研究指导项目,编号Z2010182
关键词 离散时间排队 负顾客 工作休假 矩阵几何解 稳态分布 母函数 discrete-time queue negative customer working vacation matrix-geometric solution steady-state distribution generating function
  • 相关文献

参考文献6

二级参考文献16

  • 1YANG W S, CHAE K C. A note on the GI/M/1 queue with Poisson negative arrivals[J]. J of Applied Probabi-lity,2001, 38:1081-1085.
  • 2Doshi B T.Single server queues with vacations[A].In:H.Takagi(Ed.),Stochastic Analysis of the computer and Communication Systems[C].Amsterdam:North-Holland Elsevier,1990.217-264.
  • 3Doshi B T.Queueing systems with vacations-a survey[J].Queueing Sys,1986,1:29-66.
  • 4Takagi H.Queueing analysis:a foundation of performance evaluation[M].Vol.1:Vacation and Priority Systems,Part 1,North-Holland Elsevier,Amsterdam,1991.
  • 5Tian N,Zhang G Z.Vacation queueing models-theory and applications[M].New York:Springer-Verlag,2006.1-56.
  • 6Servi L D,Finn S G.M/M/1 queue with working vacations (M/M/1/WV)[J].Perform.Evaluation,2002,50:41-52.
  • 7Kim J D,Choi D W,Chae K C.Analysis of queue-length distribution of the M/G/1 queue with working vacations[A].In:Hawaii International Conference on statistics and Related Fields[C].2003,(6):5-8.
  • 8Wu D,Takagi H.M/G/1 queue with multiple working vacations[J].Perform.Evaluation,2006,63:654-681.
  • 9Baba Y,Analysis of a GI/M/1 queue with multiple working vacations[J].Operat.Res.Lett,2005,33:201-209.
  • 10Banik A D,Gupta U C,Pathak S S.On the GI/M/1/N queue with multiple working vacations-analytic analysis and computation[J].Applied Mathematics Modelling,2007,in press.

共引文献32

同被引文献27

  • 1朱翼隽,陈燕,胡波.具有负顾客的GI/M/1休假排队模型[J].江苏大学学报(自然科学版),2004,25(4):315-318. 被引量:10
  • 2杨顺利,田乃硕.N策略工作休假M/M/1排队[J].运筹与管理,2007,16(4):50-55. 被引量:17
  • 3侯振挺,刘国欣.马尔可夫骨架过程及其应用[M].北京:科学出版社,2005.
  • 4Liu Wenyuan, Xu Xiuli, Tian Naishuo. Stochastic decompositions in the M/M/1 queue with working vacations [ J ]. Operations Research Letters, 2007, 35 (5) : 595 - 600.
  • 5Gelenbe E. Queues with negative arrivals [ J]. J Appl Prob, 1991,28 (1) :245 -250.
  • 6Rege K. On the M/G/1 queue with Bernoulli feedback[ J]. Operations Research Letters, 1993,14(3) :163 - 170.
  • 7申培霞.GI/G/1排队系统的逼近问题[D].郑州:郑州大学,2012.
  • 8王益民.马尔可夫骨架过程在GI/ G/1排队系统中的应用[D].长沙:中南大学,2003.
  • 9SERVI L, FINN S. M/M/1 queue with working vacations(M/M/1/WV) [ J]. Perfor Eval, 2003, 50(1) :41-52.
  • 10BABA Y. Anabcsis of a GI/M/1 queue with multiple vacations[ J ]. Operation Research Letter, 2005, 33 (2) :201-209.

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部