期刊文献+

空气耦合超声换能器声场计算与测量研究 被引量:13

Investigation of Acoustic Field Calculation and Measurement Method for Air-coupled Ultrasonic Transducer
下载PDF
导出
摘要 利用空耦超声换能器发射孔径的空间脉冲响应计算平面换能器的声场分布特性。该方法基于线性声学理论的假设,利用孔径表面发射的球面脉冲波的叠加来获得空间中任意点的脉冲响应。由于空气介质中超声的吸收衰减对于声场分布影响较大,并且衰减随着频率的增大而增大,所以在频域计算中引入传播衰减函数,并通过与换能器激励脉冲的卷积获得该场点的声压分布。利用多轴扫描系统及微小孔径接收器空耦换能器的声场分布情况进行试验测量,并与声场的理论计算结果进行对比,两者取得很好的一致性。试验研究不同尺寸的接收孔径对声场测量结果的影响,结果表明,由于空气耦合中转换效率、界面损耗等原因,其声场测量时的接收孔径选择是分辨率和信噪比的权衡结果,在接收增益和信噪比允许的情况下尽量减小接收孔径,可以提高声场测量的精度。 The field characteristic of an air-coupled planar ultrasonic transducer was investigated using the spatial impulse response of transducer transmitting aperture,which is based on the assumption of linear sound theory.The impulse response of arbitrary point in field space is calculation by the summation of spherical wave from all of the small area on the transmitting aperture.Attenuation is one of important factor impacting acoustical field distribution for the air-coupled ultrasonic transducer,and which increases with the frequency,a frequency-dependent attenuation function is considered in the field calculation of frequency domain,and then the pressure distribution is obtained by convolution integral of the impulse response with excitation impulse.Compared field measurement experiments are implemented using a multiple-axis scanning system and a miniature aperture detector.The results of theoretic analysis and that of experiment are in a good agreement.Finally,the effects of the receiving aperture size are also considered in sound field measurements,the results indicate that because of the low efficiency and interface loss in air couple,a compromise between resolution and signal to noise ratio(SNR) should be taken into account to choose the receiving aperture size.And a smaller aperture could improve the measuring resolution on condition that the receiving amplification coefficient and the SNR are valid.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2011年第22期19-24,共6页 Journal of Mechanical Engineering
基金 国家重大科技工程专项(2011ZX04014-081) 国家教育部高等学校学科创新引智计划(B08043)资助项目
关键词 空间脉冲响应 空耦超声换能器 声场特性 Spatial impulse response Air-coupled ultrasonic transducer Field characteristic
  • 相关文献

参考文献15

  • 1周正干,魏东.空气耦合式超声波无损检测技术的发展[J].机械工程学报,2008,44(6):10-14. 被引量:53
  • 2GóMEZ T E, ARENAS A. Acoustic impedance matching of piezoelectric transducers to the air[J]. IEEE Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51(5):624-633.
  • 3罗元国,王保良,黄志尧,李海青.空气耦合式超声波无损检测技术的发展及展望[J].仪器仪表学报,2005,26(z2):742-744. 被引量:16
  • 4ANTHONY G, GORDON H, STEPHEN P K. Characterization of air-coupled transducers[J]. IEEE Ultrasonics, Ferroelectrics, and Frequency Control, 1996, 43(4):678-689.
  • 5KAZYS R, DEMCENKO A, ZUKAUSKAS E, et al. Air coupled ultrasonic investigation of multi-layered composite materials [J]. Ultrasonics, 2006, 44:819-822.
  • 6BROWN E H, CLIFFORD S F. On the attenuation of sound by turbulence[J]. The Journal of the Acoustical Society of Americas, 1976, 60(4):788-794.
  • 7BASS H E, SUTHERLAND L C, ZUCKERWAR A J, et al. Atmospheric absorption of sound:Further developments [J]. The Journal of the Acoustical Society of America, 1995,97(1):680-683.
  • 8周正干,魏东,向上.空气耦合超声检测中衰减因素的研究[J].中国机械工程,2010,21(19):2350-2354. 被引量:14
  • 9KE W, CASTAINGS M, BACON C. 3D finite element simulations of an air-coupled ultrasonic NDT system[J]. NDT & EInternational, 2009, 42:524-533.
  • 10ALMQVIST M, HOLM A, PERSSON H W, et al. Characterization of air-coupled ultrasound transducers in the frequency range 40 kHz~2 MHz using light diffraction tomography[J]. Ultrasonics, 2000, 37:565-575.

二级参考文献68

  • 1刘贵民,张昭光.超声检测中表面粗糙度引起的声衰减补偿[J].无损检测,2007,29(4):206-208. 被引量:7
  • 2[1]E. Blomme, D. Bulcaen, F. Declercq.. Air-coupled ultrasonic NDE, Experiments in the frequency range 750kHz ~ 2MHz. NDT & E International, 2002, 35:417~426.
  • 3[2]W.A. Grandia, C. M. Fortunko, et al.. NDE applications of air-coupled ultrasonic transducers. 1995IEEE Ultras. Symposium, 1995,697 ~ 709.
  • 4[3]T. Gómez, F. Montero de Espinosa. Bridging the gap of impedance mismatching between air and solid materimais. Proc. 2000 IEEE Ultras. Symposium,2000,1069~ 1072.
  • 5[4]Montero T. Gómez, A. Albareda, R. Pkrez. High sensitive piezoelectric transducers for NDE air borne applications. 2000 IEEE Ultras. Symposium, 2000,1073~1076.
  • 6[5]T. Gómez, F. Montero de Espinosa, et al..Fabrication and characterization of silica aerogel films for air-coupled piezoelectric transducers in the megahertz range. 2002 IEEE Ultras. Symposium, 2002,1107~1110.
  • 7[6]T. Gómez.. Acoustic impedance matching of piezoelectric transducers to the air. IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control,2004,51 (5): 624~ 633.
  • 8[7]Stephen P. Kelly, Gordon Hayward, Tomás E. Gómez.Characterization and assessment of an integrated matching layer for air-coupled ultrasonic applications.IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, 2004,51 (10): 1314 ~ 1323.
  • 9[8]D.W. Schindel, D. A. Hutchins, Linchun Zou, M.Sayer. The design and characterization of micromachined air-coupled capacitance transducers.IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, 1995,42 (1): 42 ~ 50.
  • 10[9]Igal Ladabaum, Xuecheng Jin. Surface micromachined capacitive ultrasonic transducers. IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control,1998,45 (3): 678~ 690.

共引文献69

同被引文献133

引证文献13

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部