期刊文献+

基于火花放电等离子体部分氧化重整二甲醚制氢研究(英文) 被引量:2

Hydrogen production from partial oxidation of dimethyl ether by spark discharge plasma
下载PDF
导出
摘要 应用自制的多级式等离子体富氢气体制备装置,进行了二甲醚部分氧化重整制氢实验。实验结果表明,常温常压下二甲醚的转化率和氢产率随占空比的增大先增大后减小,当占空比为80%时最大值分别为87.6%和39.4%。随着电源电压的增加,放电能量和持续时间逐渐增加,转化率和氢产率逐渐增加。当反应器采用保温措施或对反应物进行加湿时,转化率和氢产率均有明显提高,同时制氢能耗下降,热效率有一定提高。实验过程中附着在电极上的积炭主要是由于氧气不足造成,随空醚比的增大,积炭明显减少。 Experiments involving hydrogen production from dimethyl ether(DME) were performed with a multistage plasma converter at atmospheric pressure.The results of these experiments show that the DME conversion and H2 yield initially increase and then decrease with the pulse duty ratio increasing.The maximal values of the DME conversion and H2 yield are 87.6% and 39.4% at a pulse duty ratio of 80%,respectively.As the increase in voltage of the electric source,the conversion and H2 yield increase significantly,since both the spark energy and the resident time of a spark in chamber are enhanced.When the heat preservation configuration or humidifying reactant is employed,the DME conversion rate and the H2 yield are enhanced,while the energy consumption is much lower than standard situation at each discharge frequency and the thermal efficiency is enhanced.Owing to insufficient oxygen,the carbon deposit is formed on the electrodes.With the increase in the A/D ratio,the carbon deposit on both the electrodes is clearly reduced.
出处 《燃料化学学报》 EI CAS CSCD 北大核心 2011年第11期844-849,共6页 Journal of Fuel Chemistry and Technology
关键词 等离子体 制氢 DME转化率 氢产率 火花能量 plasma hydrogen production DME conversion H2 yield spark energy
  • 相关文献

参考文献3

二级参考文献75

  • 1张波,傅维镳.燃料热解制氢在柴油机上的节油研究[J].内燃机工程,2006,27(4):77-80. 被引量:8
  • 2NICOLAE A, RADU C. A study of combustion of hydrogen-enriched gasoline in a spark ignition engine[ J/OL]. SAE Paper, 1996,960603. http ://www. Sae. org/technical,/papers/96063/2007.
  • 3PRINCE-RICHARD S, WHALE M, DJILALI N. A techno-economic analysis of decentralized electrolytic hydrogen production for fuel cell vehicles [ J]. Int J Hydrogen Energy, 2005,30( 11 ) : 1159-1179.
  • 4FENG W, WANG S J, NI W D, CHEN C H. The future of hydrogen infrastructure for fuel cell vehicles in China and a case of application in Beijing[J]. Int J Hydrogen Energy, 2004, 29(4) : 355-367.
  • 5PETTERSSONA L J, WESTERHOLMB R. State of the art of multi-fuel reformers for fuel cell vehicles problem identification and research needs [J]. Int J Hydrogen Energy, 2001, 26(3) : 243-264.
  • 6ZOU J-J, ZHANG Y-P, LIU C-J. Hydrogen production from partial oxidation of dimethyl ether using corona discharge plasma[ J]. Int J Hydrogen Energy, 2007, 32(8) : 958-964.
  • 7HORNG R-F, CHANG Y-P, HUANG H-H, LAI M-P. A study of the hydrogen production from a small plasma converter[ J]. Fuel, 2007, 86( 1/ 2) : 81-89.
  • 8BROMBERG L, COHN D R, RABINOVICH A. Plasma reformer-fuel cell system for decentralized power applications[ J]. Int J Hydrogen Energy, 1997, 22(1) : 83-94.
  • 9MOGHTADERI B. Effect of enhanced mixing on partial oxidation of methane in a novel micro-reactor[J]. Fuel, 2007, 84(4) : 469-476.
  • 10STARZ K A, AUER E, LEHMANN T H, ZUBER R. Characteristics of platinum-based eleetrocatalysts for mobile PEMFC applications[ J]. J Power Sources, 1999, 84(2) : 167-172.

共引文献31

同被引文献26

  • 1李聪,李兴虎,姜磊,宋凌珺.二甲醚部分氧化重整的参数优化与动力学[J].电源技术,2007,31(10):779-781. 被引量:5
  • 2KWAK B S, LEE J S, LEE J S, CHOI B H, JI M J, KANG M. Hydrogen-rich gas production from ethanol steam reforming over Ni/Ga/Mg/Zeolite Y catalysts at mild temperature [J]. Applied Energy, 2011, 88(12): 4366-4375.
  • 3SONG Ling-jun, LI Xing-hu, ZHENG Tian-lei. Onboard hydrogen production from partial oxidation of dimethyl ether by spark discharge plasma reforming [J]. International Journal of Hydrogen Energy, 2008, 33(19): 5060-5065.
  • 4YOUN M H, SEO J G, JUNG J C, PARK S, SONG I K. Hydrogen production by auto-thermal reforming of ethanol over nickel catalyst supported on mesoporous yttria-stabilized zirconia [J]. International Journal of Hydrogen Energy, 2009, 34(13): 5390-5397.
  • 5CHOUDHARY V R, MONDAL K C. CO2 reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal-oxide catalyst [J]. Applied Energy, 2006, 83(9): 1024-1032.
  • 6IAQUANIELLO G, GIACOBBE F, MORICO B, COSENZA S, FARACE A. Membrane reforming ia cortverting natural gas tohydrogen: Production costs, Part II [J]. International Journal of Hydrogen Energy, 2008, 33(22): 6595-6601.
  • 7STEIN W, EDWARDS J, HINKLEY J, SATTLER C. Fuels- hydrogen production | natural gas: solar-thermal steam reforming [C]// Encyclopedia of Electrochemical Power Sources, 2009: 300-312.
  • 8TAKE T, TSURUTANI K, UMEDA M. Hydrogen production by methanol-water solution electrolysis [J]. Journal of Power Sources, 2007, 164(1): 9-16.
  • 9PETITPAS G, ROLLIER J D, DARMON A, GONZALEZ- AGUILAR J, METKEMEIJER R, FULCHERI L. A comparative study of non-thermal plasma assisted reforming technologies [J]. International Journal of Hydrogen Energy, 2007, 32( 14): 2848-2867.
  • 10KIM S C, CHUN Y N. Production of hydrogen by partial oxidation with thermal plasma [J]. Renewable Energy, 2008, 33(7): 1564- 1569.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部