摘要
在一维的情况下,Sato给出了一个Fourier余项S_n(f)-f的一致估计,从而可得出某些S_n(f)的一致收敛的相应的判别条件。本文把这种一致估计推广到多维情形。
In the case of one dimension, Sato [1] has given a uiform estimate of the remainder of Fourier series, Sn(f)-f.It follows that a test for unif(?)rm convergence for some Sn(f) is obtained. In this paper, the uniform estimate is extended to the case of many dimensions.
关键词
FOURIER级数
一致收敛
判别法
unltiple fourier series,, rectangular sum, uniform convergence.