期刊文献+

带宽自适应的Mean Shift目标跟踪算法 被引量:6

Bandwidth-Adaptive Mean-Shift Target Tracking Algorithm
下载PDF
导出
摘要 针对传统均值漂移(Mean Shift)目标跟踪算法中核函数带宽缺乏良好自适应调整的缺点,提出了自适应调整核函数带宽的Mean Shift目标跟踪算法.该算法首先采用核函数计算目标颜色特征值的概率密度,在视频当前帧目标的最优位置区域由目标颜色特征概率投影生成目标概率密度分布图;然后根据概率密度零阶矩值调整下一帧跟踪窗口宽度,从而实现核函数带宽的自适应调整;最后通过矩运算计算椭圆参数,用椭圆锁定目标来实现复杂背景下目标的空间、尺度和方向定位.人脸跟踪实验结果表明:与传统MeanShift目标跟踪算法相比,文中算法可以实时地对目标进行缩放锁定,且能够估计目标姿态;与Cam Shift算法相比,文中算法抵抗相似颜色干扰的性能较好. In this paper,a new mean-shift target tracking algorithm is proposed to improve the kernel function bandwidth-adaptive ability of the traditional one.First,the probability density of the eigenvalue of the target color is derived by employing the kernel function.Next,a distribution image of the target probability density is projected on the new optimal location of the target in the current video frame.Then,according to the zeroth-order moment of the probability density distribution,the width of the tracking window in the next frame is adjusted.Thus,the adaptive bandwidth of kernel function is achieved.Finally,the ellipse parameters derived by means of the moment ope-ration are adopted to lock the tracking target,thus achieving the target position in space,scale and direction in a complex background.Face-tracking experimental results show that,as compared with the conventional algorithm,the proposed one can achieve real-time scaling and locking of the target and estimate the target attitude,and that,it is superior to the Cam Shift algorithm in terms of resistance to the interference of similar color.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第10期44-49,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60772121) 安徽大学"211工程"创新团队项目
关键词 目标跟踪 带宽 均值漂移 概率密度 target tracking bandwidth mean shift moment operation probability density
  • 相关文献

参考文献11

  • 1Comaniciu D, Meer P. Mean Shifl:a robust approach tn- ward feature space analysis [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(5 ) : 603-619.
  • 2Bradski G R. Real time face and object tracking as a com- ponent of a pereeptual user interface [ C ]//Proeeedings of IEEE Workshop on Applications of Computer Vision. Berlin : IEEE, 1998:214-219.
  • 3Comaniciu D, Ramesh V, Meet P. Real-time tracking of non-rigid objects using Mean Shift [ C ]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. SC Hilton Head Island: IEEE, 2000 : 142-149.
  • 4Comaniciu D, Ramesh V, Meet P. Kernel-based object tracking [ J]. 1EEE Transactions on Pattern Analysis and Machine Intelligence ,2003,25 (5) :564-577.
  • 5Collins R T. Mean-Shift blob tracking through scale space [ C ]//Proceedings of IEEE Computer Society Conferenee on Computer Vision and Pattern Recognition. Los Almni- tos :IEEE,2003:234-240.
  • 6彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 7Li Zhi-dong, Chen Jing, Schraudolph N N. An improved Mean-Shift tracker with kernel prediction and scale op- timisation targeting for low-frame-rate video tracking [ C]// Proceedings of the 19th International Conference on Pat- tern Recognition. Florida Tampa : IEEE ,2008 : 1-4.
  • 8江焯林,黎绍发,贾西平,祝红丽.基于非参数聚类和多尺度图像的目标跟踪[J].华南理工大学学报(自然科学版),2009,37(1):34-41. 被引量:2
  • 9颜佳,吴敏渊,陈淑珍,张青林.跟踪窗口自适应的Mean Shift跟踪[J].光学精密工程,2009,17(10):2606-2611. 被引量:16
  • 10张恒,李立春,于起峰.尺度方向自适应Mean Shift跟踪算法[J].光学精密工程,2008,16(6):1133-1139. 被引量:10

二级参考文献54

  • 1张恒,李立春,于起峰.一种目标区域最佳椭圆描述确定方法[J].红外与激光工程,2007,36(z2):254-258. 被引量:1
  • 2彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 3孙中森,孙俊喜,宋建中,乔双.一种抗遮挡的运动目标跟踪算法[J].光学精密工程,2007,15(2):267-271. 被引量:30
  • 4Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24 ( 5 ) : 603-619.
  • 5Collins R T. Mean-shift blob tracking through scale space [ C ] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos : IEEE ,2003:234-240.
  • 6Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2003,25 ( 5 ) :564-577.
  • 7Birchfield S T, Rangarajan S. Spatiograms versus histograms for region-based tracking [ C ] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos : IEEE ,2005 : 1 158- 1 163.
  • 8Comaniciu D, Ramesh V, Meer P. The variable bandwidth mean shift and data-driven scale selection [ C ] //Proceedings of the Eighth IEEE International Conference on Computer Vision. Vancouver: IEEE ,2001:438-445.
  • 9Comaniciu D, Meer P. Distribution free decomposition of multivariate data [ J ]. Pattern Analysis and Applications, 1999,2:22-30.
  • 10Scott D W. Multivariate density estimation [ M ]. New York : Wiley-Interscience, 1992.

共引文献221

同被引文献79

引证文献6

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部