期刊文献+

关于经验模态分解与整体经验模态分解的分离效果差别的探讨 被引量:3

A Study on the Different Separation Effect between EMD and EEMD
下载PDF
导出
摘要 经验模态分解(Empirical Mode Decomposition,简称EMD)是一种自适应信号分解方法,主要应用于非线性非平稳的信号。整体平均经验模态分解(Ensemble Empirical Mode Decomposition,简称EEMD)解决了EMD中出现的模态混合问题。在此主要讨论EMD和EEMD处理含噪信号时的效果差异,就几种特殊的信号,对EMD和EEMD在实际应用中出现的问题进行探讨。 Empirical Mode Decomposition(EMD) is kind of adaptive decomposition method and it is mainly applied to nonlinear and non-stationary signals.Ensemble Empirical Mode Decomposition(EEMD) method was raised to solve the issue of mixed mode in the traditional Empirical Mode Decomposition.The different effects of EMD and EEMD is mainly discussed to the noisy signal.It talked about some problems in applications of EMD and EEMD through particular examples.
作者 卢珍
出处 《科学技术与工程》 2011年第33期8353-8356,共4页 Science Technology and Engineering
关键词 经验模态分解 整体经验模态分解 信号分离 empirical mode decomposition ensemble empirical mode decomposition signal separation
  • 相关文献

参考文献5

  • 1Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition method and the Hilbert spectrum fornon-stationary time series analysis. Proc Roy Soc London,454A, 1998:903--995.
  • 2Wu Zhaohua, Huang N E. Ensemble empirical mode decomposition: a noise assisted data analysis method. Advances in Adaptive Data Analysis ,2009 ; 1 ( 1 ) : 1-41.
  • 3Patrick F I, Gabriel Rilling, Paulo Gonealves. Empirical mode deeompositionas a filter bank. IEEE signal processing letters, 2004 ; 11:112-114.
  • 4Flandrin P, Goncalves P, Rilling G. Detrending and den-oising with empirical mode decompositions. In : Proceedings of the Europeansignal processing conference (EUSIPCO'04), September 2004; 2: 1581-1584.
  • 5Damerval C, Meigne S, Perrier V. A fast algorithm for bidimensional EMD. IEEE Signal Processing Letters, 2005 ; 12:701-704.

同被引文献22

  • 1范红波,张英堂,孙烨.小波包和SVM在发动机故障诊断中的应用[J].车用发动机,2006(4):49-53. 被引量:9
  • 2唐浩,屈梁生.基于支持向量机的发动机故障诊断[J].西安交通大学学报,2007,41(9):1124-1126. 被引量:19
  • 3Lei Yaguo, He Zhengjia,Zi Yanyang. Application of the EEMD method to rotor fault diagnosis of rotating ma- chinery[J]. Mechanical Systems and Signal Processing, 2009,23(4) : 1327-1338.
  • 4Liang B, Iwnicki S D, Zhao Y. Application of power spectrum, cepstrum, higher order spectrum and neural network analyses for induction motor fault diagnosis [J]. Mechanical Systems and Signal Processing, 2013, 39(1) :342-360.
  • 5Ai Shu feng, Li Hui. Gear fault detection based on en- semble empirical mode decomposition and Hilbert Huang transform[C]//Fifth International Conference on Fuzzy Systems and Knowledge Discovery. Ji'nan: Is. n. 1,2008:173-177.
  • 6Wu Z H, Huang N E. Ensemble Empircial Mode De- composition., a Noise-assisted Data Analysis Method [J]. World Scientific, 2009 (1), 1-41.
  • 7张超,陈建军.EEMD算法和EMD方法抗模态混叠对比研究[J].振动与冲击,2010,29(增刊):87-90.
  • 8Wu Z H, Huang N E,Chen X Y. The Multi-Dimen- sional Ensemble Empirical Mode Decomposition Method[J]. World Scientific, 2009 (2) : 339-372.
  • 9段礼祥,张来斌,李刚,王福善,殷树根.基于EMD的天然气发动机供气系统故障诊断方法[J].车用发动机,2010(1):72-76. 被引量:5
  • 10沐士光,张玉忠,邹国忠.支持向量机在局域网故障诊断中的应用[J].计算机仿真,2011,28(2):175-178. 被引量:5

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部