期刊文献+

稠密子图发现的视频语义挖掘方法 被引量:3

Dense sub graph based video semantic mining
下载PDF
导出
摘要 目前基于内容的视频语义挖掘方法并未考虑到视频的多模态特性,不能够实现对于目前海量涌现视频的自动分析处理任务。针对此问题,提出了基于稠密子图发现的视频语义挖掘方法。该方法对待处理的视频进行中文连续语音识别、视频目标识别和视频文字识别,对于识别结果进行中文分词和词性标注,保留名词和动词作为图模型的顶点,顶点之间的边权重设置为两个顶点所代表的词语的中文语义距离,根据稠密子图发现算法挖掘视频的语义信息。实验结果表明这种方法是有效的。 Content-based video semantic mining does not take the video multi-modal attribute into account,and the mapping is not in line with the perception of video by mankind.The method above can not carry out the automatic video analysis task.Dense sub graph based semantic mining method is presented.This method integrates Chinese continuous speech recognition,video object recognition and video text recognition.Graph is used to present the video by denoting the words with vertex and the words’relation with edges.The experimental results show that this method is effective.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第33期13-14,21,共3页 Computer Engineering and Applications
基金 科技部国家科技支撑计划(No.2011BAH16B00)~~
关键词 稠密子图 中文连续语音识别 视频目标识别 dense sub graph Chinese continuous speech recognition video object recognition
  • 相关文献

参考文献7

  • 1Over P, Kraaij W.Evaluation campaigns and TRECVID[C]//ProcACM SIGMM Int Workshop Multimedia Information Retrieval. America:ACM Press,2006.
  • 2吴飞,庄越挺.互联网跨媒体分析与检索:理论与算法[J].计算机辅助设计与图形学学报,2010,22(1):1-9. 被引量:35
  • 3Snoek C G M, Worring M.Concept-based video relricval[J].Trcnds Inf Retriev,2009,4(2).
  • 4Winn.The PASCAL visual object classes challenge 2010(VOC 2010) development kit[R].University of Leeds,2010.
  • 5Open source toolkit for speech recognition[EB/OL].http://cmus- phinx.source forge.net/.
  • 6Liu Qun.HowNet based words' semantic similarity measure[C]// The 3rd Workshop for Chinese Semantic Computation,Taiwan, China, 2002.
  • 7Snoek C G M, Wordng M.The challenge problem for automated detection of 101 semantic concepts in multimedia[C]//Proeeed- ings of the 14th Annual ACM International Conference on Mul- timedia.New York,NY, USA:ACM, 2006.

二级参考文献72

  • 1Bushara K O, Hanakawa T, Immiseh I, et al. Neural correlates of cross-modal binding [J]. Nature Neuroseience, 2002, 6(2): 190-195.
  • 2Ma Q, Nadamoto A, Tanaka K. Complementary information retrieval for cross-media news content [C] //Proceedings of the 2nd ACM International Workshop on Multimedia Databases, Washington D C, 2004:45-54.
  • 3Zhu X J, Goldberg A B, Eldawy M, etal. A text-to-picture synthesis system for augmenting communication [C] // Proceedings of the 22nd AAAI Conference on Artificial Intelligence, Vancouver, 2007 : 681-687.
  • 4Smoliar S W, Zhang H J. Content-based video indexing and retrieval[J]. IEEE Multimedia, 1994, 1(2): 62-72.
  • 5Rui Y, Huang T S, Ortega M, et al. Relevance feedback: a power tool for interactive content based image retrieval [J]. IEEE Transactions on Circuits and Systems for Video Technology, 1998, 8(5): 644-655.
  • 6Datta R, Joshi D, Li J, et al. Image retrieval: ideas, influences, and trends of the new age [J]. ACM Computing Surveys, 2008, 40(2): 5-60.
  • 7Wu Y, Tian Q, Huang T S. Diseriminant-EM algorithm with application to image retrieval [C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Hilton Head, 2000: 1222-1227.
  • 8Tong S, Chang E. Support vector machine active learning for image retrieval [C] //Proceedings of the ACM International Conference on Multimedia, Ottawa, 2001:107-118.
  • 9He X F, Ma W Y, Zhang H J. for retrieval [C] //Proceedings Conference on Multimedia, New Learning an image manifold of the ACM International York, 2004:17-23.
  • 10Saul L K, Weinberger K Q, Sha F, et al. Spectral methods for dimensionality reduction [M]//Chapelle O, Scholkopf B, Zien A. Semisupervised Learning, Cambridge: MIT Press, 2006:293-308.

共引文献34

同被引文献8

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部