摘要
目前基于内容的视频语义挖掘方法并未考虑到视频的多模态特性,不能够实现对于目前海量涌现视频的自动分析处理任务。针对此问题,提出了基于稠密子图发现的视频语义挖掘方法。该方法对待处理的视频进行中文连续语音识别、视频目标识别和视频文字识别,对于识别结果进行中文分词和词性标注,保留名词和动词作为图模型的顶点,顶点之间的边权重设置为两个顶点所代表的词语的中文语义距离,根据稠密子图发现算法挖掘视频的语义信息。实验结果表明这种方法是有效的。
Content-based video semantic mining does not take the video multi-modal attribute into account,and the mapping is not in line with the perception of video by mankind.The method above can not carry out the automatic video analysis task.Dense sub graph based semantic mining method is presented.This method integrates Chinese continuous speech recognition,video object recognition and video text recognition.Graph is used to present the video by denoting the words with vertex and the words’relation with edges.The experimental results show that this method is effective.
出处
《计算机工程与应用》
CSCD
北大核心
2011年第33期13-14,21,共3页
Computer Engineering and Applications
基金
科技部国家科技支撑计划(No.2011BAH16B00)~~
关键词
稠密子图
中文连续语音识别
视频目标识别
dense sub graph
Chinese continuous speech recognition
video object recognition