期刊文献+

基于高斯过程的DNA微阵列分类算法 被引量:2

Classification algorithm for DNA microarray based on Gaussian process
下载PDF
导出
摘要 基于高斯过程对分类过程进行建模,给出了一种基于高斯过程的DNA微阵列分类算法。作为一种贝叶斯分类方法,该方法能够给出分类的概率,并能将过往的正确诊断信息,纳入到分类模型中,实现分类模型的不断优化。该方法能够基于主样本进行训练空间的维度消减,较好地解决了由于样本的加入造成的维度不断增加的问题。通过和几种常用分类算法的实验对比分析,证明了该方法具有较高的分类准确性。 A DNA microarray classification method based on Gaussian process is proposed.The method is a Bayesian classification algorithm that can give classification probability.The historical classification results can be easily added to the model to improve the model performance.In order to cope with the dimension increase,a dimensionality reduction method based on the principal samples is proposed.The method’s feasibility and effectiveness are proved in the comparison with several important classification methods.
作者 任江洪 韩露
出处 《计算机工程与应用》 CSCD 北大核心 2011年第33期26-29,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60574076)~~
关键词 微阵列 高斯过程 分类 统计学习 贝叶斯方法 microarray Gaussian process classification statistical learning Bayesian method
  • 相关文献

参考文献14

  • 1Knudsen S.Guide to analysis of DNA microarray data[M].2nd ed.USA: John Wiley & Sons Inc.,2004.
  • 2Golub T R.Molecular classification of cancer: class discovery and class prediction by gene expression monitofing[J].Science, 1999, 286(5439) : 531-537.
  • 3Lander E S.Array of hope[J].Nature Genetics Supplement, 1999, 21(1).
  • 4Sebastiani P.Statistical challenges in functional genomics[J].Statis- tical Science, 2003,18 ( 1 ) : 33-70.
  • 5Gordon G J.Bioinformatics in cancer and cancer therapy[M].USA: Humana Press, 2008.
  • 6Duda R O.Pattern classification[M].2nd ed.New Jersey: John Wiley & Sons Inc.,2004.
  • 7Shawe-Taylor J.Kemel methods for pattern analysis[M].USA: Cam- bridge University Press, 2004.
  • 8Fletcher R.Practical methods of optimization[M].2nd ed.[S.1.]: Wiley, 2000.
  • 9Zhang Xuegong.Recursive SVM feature selection and sample clas- sification for mass spectrometry and microarray data[J].BMC Bio- informatics, 2006,7.
  • 10Alon U.Broad patterns of gene expression revealed by cluster- ing analysis of tumor and normal colon tissues probed by oli- gonucleotide arrays[J].Cell Biology, 1999,96:6745-6750.

同被引文献25

  • 1GOLUB T R,SLONIM D K,TAMAYO P,et al. Molecular classification of cancer: class discovery and class predic- tion by gene expression monitoring [ J ]. Science, 1999, 286(5439) : 531-537.
  • 2ALON U,BARKAI N, NOTFERMAN D, et al. Broad pat- terns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays [ J ]. Proceedings of the National Academy of Sci- ences, 1999,96(12) : 6745-6750.
  • 3LU C, DEVOS A, SUYKENS J, et al. Bagging linear sparse bayesian learning models for variable selection in cancer diagnosis information technology in biomedicine [ J ]. IEEE Transactions on Information Technology in Bi- omedicine ,2007,11 ( 3 ) : 338-347.
  • 4CHO S B, WON H. Cancer classification using ensemble of neural networks with multiple significant gene subsets [ J]. Applied Intelligence ,2007,26( 3 ) : 243-250.
  • 5HELAMN P, VEROFE R, ATLAS S R,et al. A bayesian network classification methodology for gene expression data [ J ]. Journal of Computational Biology, 2004,11 ( 4 ) : 581-615.
  • 6LIU K H, XU C G. A genetic programming-based ap- proach to the classification of muhiclass microarray data- sets [ J ]. Bioinformatics ,2009,25 ( 3 ) : 331-337.
  • 7WANG L,ZHU J,ZOU H. Hybrid huberized support vec- tor machines for microarray classification and gene selec- tion [ J ]. Bioinformatics,2008,24(3) : 412-419.
  • 8ZHANG B T. Hypernetworks: A molecular evolutionary ar- chitecture for cognitive learning and memory [ J ]. IEEE Comoutational Intelligence Magazine ,2008,3 ( 3 ) : 49-63,.
  • 9LEE J H, LEE B, KIM J S, et al. A molecular evolutionary algorithm for learning hypernetworks on simulated DNA computers [ C ]//Proceedings of the IEEE Congress on Evolutionary Computation. New Orleans : IEEE Press, 2011 : 2845-2852.
  • 10LEE J H, LEE S H,CHUNG W H,et al. A DNA assembly model of sentence generation [ J ]. BioSystems, 2011,106 : 51-56.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部