期刊文献+

FCM迭代增强与划分混合聚类算法 被引量:1

Hybrid iterate boosting and space portioning clustering based FCM algorithm
下载PDF
导出
摘要 提出了一种以迭代增强和空间划分为基础的模糊C均值聚类方法,利用弱学习理论在每次迭代之后将产生的训练集合重新归并,在原有划分集的基础上通过分布质量权重选举方法更新产生最优假设划分集,克服了传统的简单重复训练方法的聚类效果不理想的缺点。通过形状分类实验和聚类量化指标对比,证明了该方法具有分类质量高、形状分割彻底的优点。 A hybrid Iterate boosting and space portioning clustering based FCM algorithm is proposed.Under the foundation of original portion set,the iterated optimize cluster hypothesis updates with the fraction of distribution weight voting,making use of the weak learning exoteric to remerge with the training set after every iterate process.Compared with the traditional simple repeat training clustering method,a disadvantage has been got over.It confirms that the algorithm has high quality of classification and entirely shape portioning effect in the shape classification experiment and quantity index contrast.
作者 陈磊 牛秦洲
出处 《计算机工程与应用》 CSCD 北大核心 2011年第34期158-160,共3页 Computer Engineering and Applications
基金 广西科学研究与技术开发计划项目(No.桂科攻10100002-2号)
关键词 迭代增强 聚类 空间划分 弱学习 iterate boosting clustering space portioning weak learning
  • 相关文献

参考文献8

  • 1Frossyniotis D, Likas A.Experiments with a new boosting algorithm[C]//Proceedings of the 13th International Conference on Machine Learning, 1996.
  • 2Zeng Jianping,Zhang Shiyong.Predicfive model for Internet public opinion[C]//Proceedings of International Conference on Fuzzy System and Knowledge discovery.[S.l.]: IEEE Computer Press, 2007:7-11.
  • 3Freund Y, Schapire R E.Game theory, on-line prediction and boosting[C]//Proceedings of the 9th Annual Conference on Computational Learning Theory, 1996.
  • 4Halkidi M, Bafistakis Y, Vazirgiannis M.clustering algorithms and validity measures[C]//Proceedings of the 13th International Conference on Scientific and Statistical Database Management. Virginia, SA: Computer Society, 2001.
  • 5ELENA, ESPRIT basic research project ELENA(no.6891 ) [EB/OL]. [2010-05].ftp://ftp.dice.ucl.ac.be/pub/neuralnets/ELENA/databases.
  • 6Pauwels E J,Frederix G.Finding salient regions in images nonparametric clustering for image segmentation and grouping[J]. Computer Vision and Image Understanding, 1999,75(1 ).
  • 7UCI.UCI machine learning databases repository[D/OL].University of Califomia-Irvine[2010-05]. ftp://ftp.ics.edu/pub/machine-learning-databases.
  • 8付彬,王志海,王中锋.Boosting算法中基分类器权重的动态赋值[J].广西师范大学学报(自然科学版),2009,27(3):85-88. 被引量:9

二级参考文献7

  • 1FREUND Y,SCHAPIRE R E.Experiments with a new boosting algorithm[C]//Proceedings of the thirteenth international Conference (ICML 1996).Bari,Italy.Morgan Kaufmann,1996:148-156.
  • 2GIACINTO G,ROLI F.Methods for dynamic classifier[C]//Conference on Image Analysis and Processing (ICIAP 1999).Venice,Italy:IEEE Computer Society,1999:659-664.
  • 3MITCHELL T M.Machine learning[M].New York:McGraw-Hill Companies,Inc,2001:230-247.
  • 4WITTEN I H,FRANK E.Data mining:practical machine learning tools and techniques with java implementations[M].San Francisco,California:Morgan Kaufmann Publishers,2000:365-368.
  • 5OPITZ D.Popular ensemble methods:an empirical study[J].Journal of Artificial Intelligence Research,1998,11:169-198.
  • 6李广群,王志海,田凤占.一种基于AdaBoost方法的树形HNB组合分类器[J].广西师范大学学报(自然科学版),2007,25(4):164-167. 被引量:1
  • 7王珏,石纯一.机器学习研究[J].广西师范大学学报(自然科学版),2003,21(2):1-15. 被引量:77

共引文献8

同被引文献13

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部