期刊文献+

改进的帧差法在目标匹配中的应用 被引量:13

Improved frame difference algorithm in application of target-matching
下载PDF
导出
摘要 目标匹配是计算机视觉领域的研究热点,而视频分割的准确程度决定着目标匹配的准确率。视频分割通常采用二帧差分法,分割得到的区域容易超出目标的实际范围,提供不准确的目标信息。针对此问题提出了一种改进的视频分割算法,利用连续帧间差分结合最小二分之一抽样(LHS)方法准确地定位目标区域,提取目标;同时提出一种倾斜度校正的方法校正倾斜的目标,消除无效分割区域。实验结果表明,该算法能有效地提高目标匹配的精度和速度。 Target-matching is the research hot-spot in the field of computer vision,while the precision of target-matching is profoundly affected by image segmentation.The segmentation method generally used(two frames difference) always leads the segmentation area wider than the target region,so inaccurate information is introduced.In order to handle this problem,this paper proposes an improved video segmentation algorithm based on the difference of continuous sequential frames combined with Least Half Sampling(LHS) method,which helps greatly to locate the target region accurately.Furthermore,a gradient emendation method is put forward to eliminate the invalidate region caused by sloping road surface.The experimental results illustrate that the proposed algorithm improves the precision and speed of target-matching effectively.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第34期208-211,共4页 Computer Engineering and Applications
基金 国家部委"十一五"预研项目(No.404010204)
关键词 计算机视觉 目标匹配 目标提取 倾斜度校正 最小二分之一抽样 computer vision target matching object extraction gradient emendation Least Half Sampling(LHS)
  • 相关文献

参考文献6

  • 1Barron J, Fleet D.Beachem in performance of optical flow techniques[J].Intemational Journal of Computer Vision, 1994, 12 (1) : 42-47.
  • 2Gupt S, Masound O, Martin R F K, et al.Detection and classification for vehicles[J].IEEE Transactions on Intelligent Transportation Systems, 2002,3 ( 1 ) : 37-47.
  • 3Meier T,Ngun K N.Video segmentation for content-based coding[J].IEEE Tram on Circuits and Systems for Video Technology, 1999,9(8) : 1190-1203.
  • 4赵彦玲,张之超,高振明,程建新.一种简单易行的运动对象分割方法[J].红外与激光工程,2004,33(6):611-614. 被引量:10
  • 5LOWED G.Distinctive image features from scale-invariant keypoints[J].Intemational Journal of Computer Vision, 2004, 60(2): 91-110.
  • 6Brown M, Szeliski R, Winder S.Multi-image matching using multi-scale oriented patches[C]//Proceedings of the International Conference on Computer Vision and Pattern Recongnition (CVPRa005) ,2005.

二级参考文献6

  • 1Murugas T, Peplow R, Tapamo J R. Extraction of an object model for video tracking[J]. IEEE AFRICON,2002, 6(1) :317-322.
  • 2Vincent A, Christian R, Fabrice H. Spatio-temporal Segmentation Using 3D Morphological Tools[A]. Pattern Recognition.15th International Conference[C]. 2000, 3. 877-880.
  • 3Changick Kim, Jenq-Neng Hwang. Fast and automatic video object segmentation and tracking for content-based applications[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(2) : 122-129.
  • 4Tsaig Y, Averbuch A. A region-based MRF Model for Unsupervised Segmentation of Moving Objects in Image Sequences[A]. Proceedings of the 2001 IEEE Computer Society Confer ence on Computer Vision and Pattern Recognition[C]. 2001,1.889-896.
  • 5Taaig Y, Averbush A. Automatic segmentation of moving object in video sequences: a region labeling approach[J]. IEEE Transactions on Circuits and Systems For Video Technology,2002,12(7): 597-612.
  • 6Shao-Yi Chien, Shyh-Yih Ma, Liang-Gee Chen. Efficient moving object segmentation algorithm using background registration technique[J]. IEEE Transactions on Circuits and Systems for Video Technology,2002,12(7): 577-582.

共引文献9

同被引文献83

引证文献13

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部