期刊文献+

状态预测模型中的多步预测算法

Multi-step Prediction Algorithm for State Prediction Model
下载PDF
导出
摘要 一般系统的状态受多个因素的影响,而基于动态贝叶斯网的状态预测模型就能够较准确地描述系统状态和影响因素之间的关系。针对此模型,提出推理宽度的概念以减少推理过程中的数据量,并利用时间片扩充办法来对状态进行多步预测。 The state of the system is generally affected by many random factors. The state prediction model based on dynamic bayesian network can more accurately describe the relationship between the system state and the influencing factors. According to this model, the span of the reasoning is proposed to reduce the amount of data in the reasoning process. Meanwhile the multi-step state prediction algorithm is achieved by extending time-slice.
出处 《煤炭技术》 CAS 北大核心 2011年第12期170-171,共2页 Coal Technology
关键词 动态Bayesian网 状态预测模型 预测 时间片 dynamic bayesian networks state prediction model prediction time-slice
  • 相关文献

参考文献4

二级参考文献13

  • 1Pearl J. Probabilistic Reasaning in Intelligent Systems: Networks of Plausible Inference.San Mateo, CA, Morgan Kaufmann, 1988.
  • 2Pearl J. On Evidence Reasoning in a Hierarchy of Hypotheses [ J ].Artificial Intelligence, 1986, 28: 9-15.
  • 3Heckerman D. A Bayesian Approach for Leandng Causal Networks[C].Proceedings of the 11th Conference of Uncertainty in Artificial Intelligence, San Francisco, 1995. 285-295.
  • 4Kirillov V P. Constructive Stochastic Temporal Reasoning in Situation Assessment[J].IEEE. Trans. on System, Man and Cybemetics, 1994,21(7): 1099-1113.
  • 5Zacharias G, Miao A, Illgen C, et al. SAMPLE: Situation Awareness Model for Pilot in the Loop Evaluation[C]. Proceeding of the First Annual Symposium on Situation Awareness in the Tactical Air Environment, Patuxent River, MD(June), 1996.
  • 6PEARL J.Probabilistic reasoning in intelligent systems:networks of plausible inference[M].San Mateo,California,Morgan Kaufmann,1988,383-408.
  • 7FRIEDMAN N,MURPHY K,RUSSELL S.Learning the structure of dynamic probabilistic networks[C].14th Conf.on Uncertainty in Artificial Intelligence,1998.
  • 8BAI C G,HU Q P,XIE M,et al.Software failure prediction based on a Markov Bayesian network model[J].The Journal of Systems and Software,2005,74:275-282.
  • 9亦农,李梅.信息论基础教程[M].北京:北京邮电大学出版社,2005.
  • 10COOPER G F.The computational complexity of probabilistic inference using Bayesian belief networks[J].Artificial Intelligence,1990,42(2-3):393-405.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部