期刊文献+

基于循环谱对称性的频谱感知算法 被引量:4

Spectrum sensing algorithm based on symmetry of cyclic spectral correlation
下载PDF
导出
摘要 针对现有基于循环谱的频谱感知算法的不足,利用改进SSCA算法计算接收信号的循环谱,减少算法的计算量;利用循环谱的对称性,选择非零循环频率处的循环谱抵抗干扰和噪声,结合对称性搜索策略进行频谱感知。分析并仿真了循环谱的参数对频谱感知算法的影响,仿真结果证明了所提出算法克服了传统算法的不足,提高了低信噪比下的正确检测性能。 In response to the shortcoming of conventional algorithms,modified SSCA was exploited to calculate the cy-clic spectral correlation of received signal for decreasing the computational complexity.Symmetry of cyclic spectral cor-relation(CSC) was used to detect the idle spectrum,criteria and method of selecting and judging symmetry were pro-posed.Conventional binary hypothesis condition was translated to concrete value according to symmetry.In order to eliminate the effect of interference and noise,non-zero cyclic frequencies were selected.Finally,the performance of the presented algorithm was compared with the conventional algorithms by virtue of simulation.Simulation results proved the correctness and the superiority of new algorithms.Using symmetry improves the successful detection probability for low SNR and reduces the computational complexity.
出处 《通信学报》 EI CSCD 北大核心 2011年第11期21-26,34,共7页 Journal on Communications
基金 国家重点基础研究发展计划("973"计划)基金资助项目(2007CB310601) 中央高校基本科研业务费专项基金资助项目(HITNSRIF2012018)~~
关键词 循环谱 频谱感知 分段谱相关算法 循环谱对称性 cyclic spectral correlation spectrum sensing strip spectral correlation algorithm symmetry of CSC
  • 相关文献

参考文献14

  • 1JOSEPH MITOLA, MAGUIRE G Q J. Cognitive radio:making soft- ware radios more personal[J]. IEEE Personal Communications. 1999, 6(4): 13-18.
  • 2HAYKIN S. Cognitive radio brain-empowered wireless communica- tions[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201-220.
  • 3MA J, LI G Y. Signal processing in cognitive radio [J]. Proceedings of the IEEE, 2009, 97(5): 805-823.
  • 4HAYKIN S, THOMSON D J, JEFFREY H. Spectrum sensing for cognitive radio[A]. Proceedings of the IEEE[C]. 2009, 97(5): 849-877.
  • 5GARDNER W A, NAPOLITANO A, PAURA L. Cyclostationarity: half a century of research[J]. Signal Processing. 2006, 86:639-697.
  • 6SAHAI A, CABRIC D. Spectrum sensing: fundamental limits and practical challenges[A]. IEEE Symposium on New Frontiers in Dyn Spectrum Access Network[C]. Baltimore, USA, 2005.
  • 7KAY S M. Fundamentals of Statistical Signal Processing: Detection Theory[M]. Englewood Cliffs, NJ: Prentice-Hall, 1998.
  • 8ENSERINK S, COCHRAN D. A cyclostationary feature detector[A]. Proc 28th Asilomar Conf. Signals, Syst, Comput[C]. CA, USA, 1994. 2: 806-810.
  • 9陈星,贺志强,吴伟陵.基于循环平稳的多天线感知无线电频谱检测[J].北京邮电大学学报,2008,31(2):85-89. 被引量:5
  • 10LUNDEN J, KOIVUNEN V, HUTTUNEN A. Spectrum sensing in cognitive radios based on multiple cyclic frequencies[A]. 2nd Interna- tional Conference on CrownCom[C]. Orlando,USA, 2007. 37-43.

二级参考文献32

  • 1Mitola Ⅲ J. Cognitive radio: An integrated agent architecture for software defined radio. [Ph.D. dissertation], KTH Royal Institute of Technology Stockholm, Sweden,2000.
  • 2Gardner W A and Spooner C M. Cyclic spectral analysis for signal detection and modulation recognition. MILCOM'88, San Diego, CA, 1988: 419-424.
  • 3Gardner W A. Exploitation of spectral redundancy in cyclostationary signals. IEEE Signal Process Magazine, 1991, 8(2): 14-36.
  • 4Kim K, Akbar I A, Bae K K, Um J S, Spooner C M, and Reed J H. Cyclostationary approaches to signal detection and classification in cognitive radio. IEEE DySPAN, Dublin, Ireland, 2007: 212-215.
  • 5Fehske A and Gaeddert J A. A new approach to signal classification using spectral correlation and neural networks. IEEE DySPAN, Baltimore, Maryland, USA, 2005: 144-150.
  • 6He Tao and Zhou Zheng-ou. Modulation classification based on multifractal features. 6th International Conference on ITS Telecommunications Proceedings, Chengdu, China, 2006: 152-155.
  • 7Wu Dan, Gu Xuemai, and Guo Qing. A New Scheme of Automatic Modulation Classification Using Wavelet and WSVM. 2nd International Conference on Mobile Technology, Applications and Systems, Guangzhou, China, 2005, 5pp.
  • 8Vapnik V N. The nature of statistical learning theory. New York: Springer-Verlag, 1995: 85-90.
  • 9Wu T F, Lin C J, and Weng R C. Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research, 2004, 5(8): 975-1005.
  • 10Ian F A, Lee W Y, Mehmet C V, et al. Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey[J]. Computer Networks, 2006(50): 2127-2159.

共引文献24

同被引文献42

  • 1杨露菁,邹岗,李启元.多传感器分布式融合检测自适应算法[J].探测与控制学报,2006,28(5):28-30. 被引量:1
  • 2高玉龙,张中兆.基于NiosⅡ的SSCA算法实现[J].电子技术应用,2007,33(4):92-94. 被引量:1
  • 3王尚斌,赵俊渭,李金明,孙勇.分布式贝叶斯数据融合系统的遗传算法优化[J].计算机仿真,2007,24(4):183-185. 被引量:2
  • 4LEON REZNIK, GREGORY VON PLESS, TAYEB AL KARIM. Distributed Neural Networks for Signal Change Detection: On the Way to Cognition in Sensor Networks [J]. IEEE Sensors Journal,2011,11(3) :791-798.
  • 5WILLIAM A LINTZ,JOHN C MCEACHEN. A Method for Emphasizing Signal Detection in Wireless Sensor Network Radio Frequency Array Operation [ C ]. Proceedings of the 42nd Hawaii International Conference on System Sci- ences, 2009.
  • 6WENDI RABINER HEINZELMAN, ANANTHA CHAN- DRAKASAN, HARI BALAKRISHNAN. Energy-Efficient Communication Protocol for Wireless Microsensor Net- works[ C]. Proceedings of 33rd Hawaii International Con- ference on System Sciences,2000.
  • 7TANDRA R,SAHAI A. Fundamental Limits on Detection in Low SNR Under Noise Uncertainty[ C]. Proc IEEE Int Conf Wireless Networks, Commun and Mobile Computing, Maui, 2005: 464-469.
  • 8DIGHAM F,ALOUINI M,SIMON M. On the Energy De- tection of Unknown Signals Over Fading Channels [ C ]. Proc IEEE Int Conf Commun, Seattle, Washington, 2003 : 3 575-3 579.
  • 9CHEN Y F. Improved Energy Detector for Random Sig- nals in Gaussian noise[ J]. IEEE Communications,2010, 9(2) :558-563.
  • 10TIAN Z, GIANNAKIS G B. A Wavelet Approach to Wide- band Spectrum Sensing for Cognitive Radios [ A ]. Crown- corn 2006, Mykonos,Greece, 2006.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部