期刊文献+

基于不确定PPI网络的功能模块挖掘

Mining functional modules in uncertain protein-protein interaction network
下载PDF
导出
摘要 近年来,挖掘具有生物学意义的功能模块,吸引了很多人的关注。但是,生物信息学中的蛋白质交互(PPI)网络和其他的一些生物数据常常会由于实验检测方法的局限性而呈现出不确定性。以具有不确定性的PPI数据为研究对象,挖掘蛋白质复合物。引入了一些新概念,并给出了一个深度优先算法。使用MIPS数据库评估实验结果表明,该算法在精确度和覆盖率两个方面性能优良。在基因拓扑上分析实验结果证实了所得到的大多数蛋白质复合物具有很高的相似性。最后也对算法的可扩展性进行了验证。总之,可以有效地从不确定PPI网络中挖掘出功能模块。 Mining functional modules with biological significance has attracted lots of attention recently. However, protein-pro- tein interaction (PPI) network and other biological data generally bear uncertainties attributed to noise, incompleteness and inaccuracy in practice. This paper focused on received uncertain PPI data to explore interesting protein complexes. Moreover, used some novel conceptions extended from known graph conceptions to develop a depth-first algorithm to mine protein comple- xes in a simple uncertain graph. Experiments took protein complexes from MIPS database as standard of accessing experimental results. Experiment results indicate that the algorithm has good performance in terms of coverage and precision. Experimental results are also assessed on gene ontology (GO) annotation, and the evaluation demonstrates proteins of most acquired protein complexes show a high similarity. Finally, several experiments are taken to test the scalability of the algorithm. It come to a conclusion that it can effectively mine functional modules from uncertain PPI network.
出处 《计算机应用研究》 CSCD 北大核心 2011年第12期4481-4484,4491,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(60703105) 西北工业大学基础研究基金资助项目(JC201042)
关键词 功能模块 蛋白质交互 不确定图 期望稠密度 相关度 functional modules protein-protein interaction (PPI) uncertain graph expected-density relativity
  • 相关文献

参考文献11

  • 1KING A D, PRZULJ N, JURISICA I. Protein complex prediction via cost-based clustering [ J ]. Bioinformaties, 2004, 20 ( 17 ) : 3013- 3020.
  • 2BADER G D, HOGUE C W. An automated method for finding molecu- lar complexes in large protein interaction networks [ J ]. BMC Bioin- formatics ,2003,4( 1 ) :2.
  • 3GIRVAN M,NEWMAN M. Community structure in social and biologi- cal networks [ J ]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(12):7821- 7826.
  • 4LOU Feng,YANG Yun-feng, CHEN C F, eta/. Modular organization of protein interaction networks[J]. Biointorttatics,2007,23(2) :207-214.
  • 5ZOU Zhao-nian, LI Jian-zhong, GAO Hong, et al. Mining frequent sub- graph patterns from uncertain graph data[ J]. IEEE Trans on Knowl- edge and Data Engineering,2010,22(9):1203-1218.
  • 6CHARU C A, LI Yan, WANG Jian-yong, et al. Frequent pattern mining with uncertain data[ C]//Proc of the 15th ACM SIGKDD In- ternational Conference on Knowledge Discovery and Data Mining. New York : ACM Press,2009:29- 38.
  • 7YAN Xi-feng, ZHOU X J, HAN Jia-wei. Mining closed relational graphs with connectivity constraints [ C ]//Proc of the 1 l th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. New York : ACM Press,2005:324-333.
  • 8YAN Xi-feng,I-IAN Jia-wei. Closegraph: mining closed frequent graph patterns[ C]//Proc of the 9th ACM SIGKDD International Confer- ence on Knowledge Discovery and Data Mining. New York: ACM Press, 2003 : 286 - 295.
  • 9HUAN Jun, WANG Wei, PRINS J, et al. Mining maximal frequent sub-garaphs from graph databases[ C ]//Proc of the 10th ACM SIGK- DD International Conference on Knowledge Discovery and Data Min- ing. New York:ACM Press,2004:581-586.
  • 10ZOU Zhao-nian, LI Jian-zhong, GAO Hong, et al. Finding top-k maxi- mal cliques in an uncertain graph[ C ]//Proc of the 26th International Conference on Data Engineering. Long Beach: IEEE Press, 2010: 649 - 652.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部