期刊文献+

新的噪声污染灰度图像边缘检测统计方法 被引量:3

Novel statistical method for edge detection of noisy gray scale image
下载PDF
导出
摘要 针对传统算子进行边缘检测时易丢失边缘信息和在非边缘处增强噪声的缺陷,提出一种基于非参数变点统计分析的噪声图像边缘检测方法,该统计方法不但不需要图像数字特征的任何先验信息,而且对噪声污染的图像不作任何滤波处理。实验结果表明,提出的算法优于Sobel算子,并能抑制信噪较低的高斯噪声和密度较高的椒盐噪声对分割结果的影响,是一种有效的噪声污染灰度图像边缘检测方法。 The traditional edge detection algorithms had the defect losing details of the edge and the defect enhancing noise in the non-edge, so this paper proposed a novel method of edge detection of noisy gray scale image which was based on the non- parametric change point statistic analysis. It not only minimised the need for a priori information about images, but also didn' t filter any noise as well. It was not only suitable for detecting the edge of images added Gaussfan white noise, but also for detecting the edge of images added salt and pepper noise. Experimental results show that the algorithm is superior to Sobel algorithm, and can suppress Gaussian white noise of low SNRT and salt and pepper noise of high density. In all, it is a valid method of edge detection for gray images contaminated by noise.
出处 《计算机应用研究》 CSCD 北大核心 2011年第12期4780-4781,共2页 Application Research of Computers
基金 国家自然科学基金专项基金资助项目(11026135) 教育部人文社科基金青年项目(10YJC910007) 陕西13115科技创新工程项目(2009ZDTG-85) 西北大学交叉学科资助项目(10YJC03)
关键词 边缘检测 非参数统计分析 噪声图像 SOBEL算子 edge detection nonparametric statistic analysis noisy image Sobel algorithm
  • 相关文献

参考文献7

  • 1章毓晋.图像分割[M].北京:科学出版社,2001..
  • 2HUANG J S, TSENG D H. Statistical theory of edge detection[ J ], Computer Vision, Graphics, and Image Processing, 1988,43 ( 3 ) :337- 346.
  • 3BASSEVILLE M, NIKIFOROV 1 V. Detection of abrupt changes: theory and applications [ M]. Englewood Cliffs: Prentice-Hall, 1993.
  • 4BRODSKY B E, DARKHOVSKY B S. Nonparametric methods in change-point problems[ M ]. Dordrecht : Kluver Acad Publ, 1.993.
  • 5HOLLANDER M, WOLFE D A. Nonparametric statistical methods [ M ]. Hoboken: Wiley,1973.
  • 6关毅璋,郝志峰.随机变点统计的MDR边缘检测算法[J].计算机应用研究,2009,26(1):384-386. 被引量:4
  • 7YITZHAKY Y, PELI E. A method for objective edge detection evalu- ation and detector parameter selection[ J ]. IEEE Trans on Pattern Anal Mach Intel1,2003,25( 8 ) : 1027- 1033.

二级参考文献7

  • 1HUANG J S, TSENG D H. Statistical theory of edge detection [ J ]. Computer Vision, Graphics, and Image Processing, 1988,43 (3) :337-346.
  • 2HARALICK R M. Digital step edges from zero crossing of second directional derivatives[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1984,6( 1 ) :58-68.
  • 3BASSEVILLE M, NIKIFOROV I V. Detection of abrupt changes: theory and applications [ M ]. Englewood Cliffs : Prentice-Hall, 1993.
  • 4GUAN Yi-zhang, HAO Zhi-feng. Using SVMs method to detect abrupt change[ C]//Proc of International Conference on Machine Learning and Cybernetics. Hong Kong: IEEE Press,2007.
  • 5LAVIELLE M, LEBARBIER E. An application of MCMC methods to the multiple change-points problem [ J ]. Signal Processing, 2001, 81 (1) :39-53.
  • 6LAVIELLE M. Using penalized contrasts for the change-point problem [ J ]. Signal Processing ,2005,85 ( 8 ) : 1501-1510.
  • 7吴晓波.图像边缘特征分析[J].光学精密工程,1999,7(1):59-63. 被引量:41

共引文献578

同被引文献27

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部