期刊文献+

基于支持向量机的干气制乙苯反应器出口温度预测模型研究 被引量:5

The study on temperature prediction model for dry gas-to-ethylbenzene reactor's outlet based on Support vector machine
原文传递
导出
摘要 鉴于化工过程往往机理复杂、耦合性强、高度非线性,难于建立其机理模型,这时就需要采用经验建模的方法。支持向量机是一种新的机器学习方法,其基于结构风险最小化原则,用支持向量机建模不需要考虑对象机理,且对非线性问题有很好的效果,是一种良好的经验模型,己被应用于不少化工问题中。在本文中我们把支持向量机这一新颖算法应用于干气制乙苯反应器出口温度预测模型中,简要介绍了支持向量机的一些基本理论,在此基础上详细研究支持向量机在干气制乙苯反应器出口温度预测模型建模中的应用。首先,选择支持向量机的类型为ε-SVR,通过四种核函数在实际预测中误差的比较选择径向基(RBF)核函数作为本文支持向量机模型所用的核函数,之后应用交叉验证的方法选择最佳参数C=4,γ=0.0051543,最后建立预测模型并对训练集和预测集分别预测,预测结果相关系数在90%以上,说明模型精度达到要求。对支持向量机和遗传算法优化的BP神经网络算法的建模效果进行综合比较和讨论,得出支持向量机与传统建模方法相比有更好的预测准确率的结论。 Since the mechanism of chemical processes are often complex,strongly coupled,highly nonlinear and difficult to establish the mechanism model,a method using empirical modeling is required.Support Vector Machine is a new machine learning method,which is based on the principle of structural risk minimization,support vector machine modeling is a good experience model as it does not need to consider the mechanism of the object,and it has a good effect on the solution to nonlinear problems.It has been applied to many chemical problems.In this paper we use support vector machine algorithm to the temperature prediction model of dry gas-to-ethylbenzene reactor's outlet,and the basic SVM theory is introduced briefly,support vector machines in the dry gas-to-ethylbenzene reactor's outlet temperature prediction model modeling was studied in detail on this basis.At first,the type of support vector machines wasε-SVR.Through comparison of the error of four kernel functions in the actual prediction,radial basis(RBF) kernel function was selected use for support vector machine model in this paper, then cross-validation method is used to select the best parameters C = 4,γ= 0.0051543,at last,establish the prediction model and predict the training set and prediction set respectively,the correlation coefficient of predicted results are above 90%,indicating that the model's accuracy can meet the requirements.Finally,support vector machines and GA-BP algorithm for modeling are compared and discussed comprehensively, come to a conclusion that support vector machines has better prediction accuracy in comparison with traditional modeling method.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2011年第11期1372-1376,共5页 Computers and Applied Chemistry
关键词 干气制乙苯 支持向量机 神经网络 预测模型 dry gas-to-ethylbenzene support vector machine neural network prediction model
  • 相关文献

参考文献3

二级参考文献34

  • 1张兵,陈德钊.迭代遗传算法及其用于生物反应器补料优化[J].化工学报,2005,56(1):100-104. 被引量:16
  • 2张兵,陈德钊,吴晓华.分级优化用于边值固定的化工动态优化问题[J].化工学报,2005,56(7):1276-1280. 被引量:11
  • 3王兴玲,李占斌.基于网格搜索的支持向量机核函数参数的确定[J].中国海洋大学学报(自然科学版),2005,35(5):859-862. 被引量:127
  • 4Suyken J A K,Vandewalle J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 5Vapnik V.Statistical Learning Theory[M].New York:Wiley-Interscience,1998.
  • 6Hou Xianglin(侯祥麟).Chinese Petroleum Refining Technology(中国炼油技术).Beijing:China Petrochemical Press,1991.12
  • 7Nadaraya E A.On Estimating Regression.Theory of Probability and Its Applications,1964,9:141-142
  • 8Specht D F.A General Regression Neural Network.IEEE Transactions on Neural Networks,1991,2(6):568-576
  • 9Schioler H,Hartmann U.Mapping Neural Network Derived from the Parzen Window Estimator.Neural Networks,1992,5:903-909
  • 10Parzen E.An Estimation of a Probability Density Function and Mode.Ann. Math. Stat.,1962,33:1065-1076

共引文献90

同被引文献56

  • 1胡惠仁,李海明,张盆.脱墨浆高白度漂白初步研究[J].中国造纸,2005,24(3):5-7. 被引量:3
  • 2郑力会,鄢捷年,陈勉,张广清.油气井工作液成本控制优化模型[J].石油学报,2005,26(4):102-105. 被引量:4
  • 3陈明亮,向兴金,曾宪刚,李自立,徐绍诚,莫成孝,刘自民.钻井液软件包MUD[J].钻井液与完井液,1996,13(5):32-34. 被引量:2
  • 4叶长燊.MATLAB在稳态与动态导热过程分析中的应用[J].计算机与应用化学,2006,23(10):986-990. 被引量:7
  • 5詹怀宇.制浆原理与工程[M].北京:中国轻工业出版社,2011.
  • 6VAPNIK V N. The Nature of Statistical Learning Theory [ M] . New York: Springer Press, 1995.
  • 7VAZQUEZ SANCHEZ ERNESTO,GOMEZ GIL JAIME,CARLOS GAMAZO REAL JOSE, et al. A New Method forSensorless Estimation of the Speed and Position in Brushed DC Motors Using Support Vector Machines [ J] . IEEE Transctionson Industrial Electronics, 2012, 59(3) : 1397-1408.
  • 8LIN Kuoping, PAI Pingfeng, YANG Shunling. Forecasting Concentrations of Air Pollutants by Logarithm Support VectorRegression with Immune Algorithms [ J] . Applied Mathematics and Computation, 2011, 217(2) : 5318-5327.
  • 9M0HAMMADHOSSEIN 2ANGOOEI, SAEED JALILI. PSSP with Dynamic Weighted Kernel Fusion Based on SVM-PHGS[J]. Knowledge-Based Systems, 2012, 27(3) ; 424-442.
  • 10Okwonna O. The effect of pulping concentration treatment on the prep- erties of microcrystalline cellulose powder obtained from waste paper [J]. Carbohydrate Polymers, 2013, 98(1): 721.

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部