期刊文献+

基于互补理论的扩展有限元接触问题实现 被引量:5

Implementation of XFEM's contact problem based on complementary law
下载PDF
导出
摘要 在处理含有裂隙这类不连续问题时,常规有限元方法需要对裂隙尖端部位进行局部网格加密,当裂隙扩展时还需要进行网络重构。基于单位分解思想的扩展有限元成功解决了常规有限元难以处理的裂隙类不连续问题。在研究复合裂隙时,通常需要考虑裂隙的接触问题。基于互补理论,建立了裂隙面上相对位移和接触力的互补方程,并采用牛顿法求解,无需开闭迭代,且能够快速收敛。最后,对含裂隙平板进行受压数值试验,计算结果表明,基于互补理论的扩展有限元接触算法能够有效地阻止裂隙两端网格的相互嵌入,且获得裂隙面上的应力分布与实际一致。 When dealing with discontinuous issues such as fracture and crack in geo-engineering,conventional finite element method(CFEM) need to refine mesh in the local zone including crack tip;furthermore,the mesh must be reconfigured and re-partitioned once the crack propagation happened.The extended finite element method(XFEM),based on the idea of partition of unit method,can successfully solve these problems easily,which may hardly be deposed by CFEM.Usually,contact problem of crack surface must be considered when studying some compound fracture.Based on the complementary theory,the complementary equation between relative displacement and contact force of the crack surface can be established,and solved by Newton's method without considering opening and closing iteration.Finally,as a numerical example,a plate with crack is compressed to indicate the effectiveness of this method.The results indicate that the method can prevent mesh penetration from one side of the crack into the other side effectively;and also obtain the stress distribution that is consistent with the actual on the crack surfaces.
出处 《岩土力学》 EI CAS CSCD 北大核心 2011年第12期3805-3811,3820,共8页 Rock and Soil Mechanics
基金 国家自然科学基金资助项目(No.11102220 51004073) 河北省自然科学基金项目(No.E2010001062)
关键词 扩展有限元 互补理论 接触问题 extended finite element method(XFEM) complementary theory contact problem
  • 相关文献

参考文献10

  • 1BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620.
  • 2MOES N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131 - 150.
  • 3李录贤,王铁军.扩展有限元法(XFEM)及其应用[J].力学进展,2005,35(1):5-20. 被引量:133
  • 4彭自强,王水林,葛修润.单位分解法、无网格法、数值流形方法之形函数的内在联系[J].岩石力学与工程学报,2002,21(A02):2429-2431. 被引量:7
  • 5LIU X Y, XIAO Q Z, KARIHALOO B L. XFEM for direct evaluation of mixed mode SIFS in homogeneous and bi-material[J]. International Journal for Numerical Methods in Engineering, 2004, 59(8): 1103-1118.
  • 6GINER E, SUKUMAR N, TARANCON J E, et al. An ABAQUS implementation of the extended finite element method[J]. Engineering Fracture Mechanics, 2009, 76: 347-368.
  • 7DOLBOW J, MOES N, BELYTSCHKO T. An extended finite element method for modeling crack growth with frictional contact[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(51-52): 6825 - 6846.
  • 8郑宏,江巍.基于互补理论的非连续变形分析方法[J].中国科学(E辑),2009,39(10):1702-1708. 被引量:13
  • 9FISCHER A. A special Newton-type optimization method[J]. Optimization, 1992, 24(3-4): 268-284.
  • 10ZHENG H, LIU D F, LEE C F, et al. A new formulation of Signorini's type for seepage problems with free surfaces[J]. International Journal for Numerical Methods in Engineering, 2005, 64(1): 1 -16.

二级参考文献110

  • 1王建全,林皋,刘君.Static and dynamic stability analysis using 3D-DDA with incision body scheme[J].Earthquake Engineering and Engineering Vibration,2006,5(2):273-283. 被引量:4
  • 2Ortiz M, Leroy Y, Needleman A. A finite element method for localized failure analysis. Computer Methods in Applied Mechanics and Engineering, 1987, 190:3647~3672
  • 3Belvtschko T, Fish J, Engelmann B E. A finite element withembedded localization zones. Computer methods in Applied Mechanics and Engineering, 1988, 70:59~89
  • 4Dvorkin E N, Cuitino A M, Gioia G. Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions. International Journal for Numerical Methods in Engineering, 1990, 30:541~564
  • 5Lotfi H R, Sheng P B. Embedded representations of fracture in concrete with mixed finite elements. International Journal for Numerical Methods in Engineering, 1995, 38:1307~1325
  • 6Simo J C, Oliver J, Armero F. An analysis of strong discontinuities induced by strain softening in rate-independent in elastic solids. Computational Mechanics, 1993, 12:277~296
  • 7Simo J C, Oliver J. Modeling strong discontinuities in solid mechanics by means of strain softening constitutive equations. In: Mang H, Bicanic N, de Borst R, eds. Computational Modeling of Concrete Structures. Pineridge:Swansea, 1994. 363~372
  • 8Armero F, Garikipati K. An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids. International Journal of Solids and Structures, 1996,33:2863~2885
  • 9Sluys L J, Berabds A H. Discontinuous failure analysis for model-Ⅰ and model-Ⅱ localization problems. International Journal of Solids and Structures, 1998, 35:4257~4274
  • 10Larsson R, Runesson K. Element-embedded localization band based on regularized displacement discontinuity. ASCEJournal of Engineering Mechanics, 1996, 12:402~411

共引文献150

同被引文献60

  • 1杜守继,刘华,职洪涛,陈浩华.高温后花岗岩力学性能的试验研究[J].岩石力学与工程学报,2004,23(14):2359-2364. 被引量:133
  • 2李录贤,王铁军.扩展有限元法(XFEM)及其应用[J].力学进展,2005,35(1):5-20. 被引量:133
  • 3陈国庆,陈万吉,冯恩民.三维接触问题的非线性互补原理及算法[J].中国科学(A辑),1995,25(11):1181-1190. 被引量:26
  • 4刘贵荣,石豫川,冯文凯.金江滑坡成因离散元模拟[J].水文地质工程地质,2007,34(1):74-76. 被引量:10
  • 5BELYTSCHKO T,BLACK T.Elastic crack growth in finite elements with minimal remeshing[J].International Journal for Numerical Methods in Engineering,1999,45(5):601-620.
  • 6MOES N,DOLBOW J,BELYTSCHKO T.A finite element for crack growth without remeshing[J].International Journal for Numerical Methods in Engineering,1999,46(1):131-150.
  • 7ASFERG J L,POULSEN P N,NIELSEN L O.A consistent partly cracked XFEM element for cohesive crack growth[J].International Journal for Numerical Methods in Engineering,2007,72(4):464-485.
  • 8ZI G,CHEN H,XU J,et al.The extended finite elementmethod for dynamic fractures[J].Shock and Vibration,2005,12(1):9-23.
  • 9SUKUMAR N,MOES N,MORAN B,et al.Extended finite element method for three-dimensional crack modeling[J].International Journal for Numerical Methods in Engineering,2000,48(11):1549-1570.
  • 10AREIAS P M A,BELYTSCHKO T.Analysis of three-dimensional crack initiation and propagation using the extended finite element method[J].International Journal for Numerical Methods in Engineering,2005,63(5):760-788.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部