期刊文献+

非游荡算子的拓扑稳定性 被引量:3

The topologically stability of a non-wandering operator
原文传递
导出
摘要 在无穷维可分Banach空间中引进了无环条件和滤子的概念,给出了非游荡算子的滤子的例子,说明了基本集满足无环条件的非游荡算子是存在的,在此基础上给出了非游荡算子的拓扑稳定性定理。 The stability of a non-wandering operator is studied by introducing filtration and no-cycle condition in infinite dimensional separable Banach space.Some examples of filtration and no-cycle condition in infinite dimensional separable Banach space are shown.Then a sufficient condition for a non-wandering vector manifold to be stable is given.
作者 王明刚 许华
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2011年第11期81-88,共8页 Journal of Shandong University(Natural Science)
基金 泰州市科技发展计划项目(2011045)
关键词 非游荡算子 超循环算子 滤子 无环条件 拓扑稳定性 non-wandering operator hyper-cyclic operator filtration no-cycle condition topologically stability
  • 相关文献

参考文献5

二级参考文献6

共引文献13

同被引文献25

  • 1田立新,卢殿臣.非游荡算子的性质[J].应用数学和力学,1996,17(2):151-156. 被引量:10
  • 2Godefroy G, Shapiro J H. Operators with dense, invariant cychc vector manifolds [J]. J Funct Anal, 1991,98:229 -269.
  • 3Tian L X, Lu D C. The property of nonwandering operator[ J ]. Appl Math Mech:English, 1996,17 (2) :155 -161.
  • 4Tian L X, Zhou J B, Liu X, et al. Non -wandering operators in Banach space[J]. Inter J Math Math Sci,2005,24:3895 - 3908.
  • 5Tian L X, Wang M G. Pseudo orbit tracing property of non - wandering operator[J]. Inter J Nonl Sei,2007,3( 1 ) :3 -7.
  • 6Wang M G. Non - wandering property of differentiation operator [ J ]. Inter J Nonl Sci,2008,8 ( 2 ) :21 - 27.
  • 7Wang M G, Xu H. Non -wandering operator in Bargmann space[ J]. J Math Research,2010(5 ) :34 -38.
  • 8Tian L X, Ren L H. N - multiple non - wandering unilateral weighted backward shift operators and the property of direct sum op- erators in Banach space[J]. Inter J Nonl Sci,2006,2(2) :104 -110.
  • 9MacCluer C R. Chaos in linear distributed systems [ J ]. J Dyn Sys Measure Control, 1992,114:322 - 324.
  • 10Desch W, Schappacher W, Webb G F. Hypercyclic and chaotic semigroup of linear operators[J]. Ergod Theory Dyn Sys,1997, 17:793 - 819.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部