期刊文献+

基于复杂结构数据聚类的推荐系统 被引量:1

A recommender system based on clustering of complex structured data
下载PDF
导出
摘要 针对目前推荐系统存在的不能处理结构复杂、语义丰富领域的推荐问题以及对项目空间和用户空间本质特征理解的狭窄性和简单性、稀疏性问题、可扩展性问题,研究了基于复杂结构数据聚类的推荐方法,提出了一个新颖、有效、具有高可扩展性的基于复杂结构数据聚类的混合型推荐系统HRSCCSD。该系统能同时融合用户语义、项目语义和项目协同多方面信息,极大地拓展了当前推荐系统的应用深度和广度。实验表明,所提出的推荐技术在覆盖性、准确性以及可扩展性方面均优于当前主流的推荐技术。 The HRSCCSD, a novel, elegant and scalable hybrid recommender system based on clustering of complex structured data is proposed. The system can resolve the problems of the current recommender systems such as unfeasibility in complex structured and rich semantic fields, unilateralism and simplicity for employing item space and user space, sparsity, and scalability, and take account of semantic information about users, semantic information about items, and collaborative information about items. As a result, the application in recommendation can be greatly expanded. The experimental results indicate that the proposed recommendation method is superior to the current mainstream techniques in the respects of covergae, accuracy and expansibility.
出处 《高技术通讯》 CAS CSCD 北大核心 2011年第11期1115-1120,共6页 Chinese High Technology Letters
基金 国家自然科学基金(60875029)和国家科技支撑计划(2011BAH10B05)资助项目.
关键词 复杂结构数据(CSD) 推荐系统 Escher语言 高阶逻辑 complex structured data (CSD), recommender system, ility. escher language, higher-order logic
  • 相关文献

参考文献16

  • 1Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transaction on Knowledge and Data Engineering, 2005,17 : 734-749.
  • 2Mooney R J, Roy L. Content-based book recommending using learning for text categorization. In: Proceedings of the 5th ACM Conference on Digital Libraries, New York, USA, 2000. 195-200.
  • 3Pazzani M, Billsus D. Learning and revising user pro- files: the identification of interesting web sites. Machine Learning, 1997, 27(3): 313-331.
  • 4Breese S, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering. In: Pro- ceedings of the 14th Conference on Uncertainty in Artifi- cial Intelligence, Madison, USA, 1998. 43-52.
  • 5Basu C, Hirsh H, Cohen W. Recommendation as classifi- cation: using social and content-based information in rec- ommendation. In: Proceedings of the 15th National/10th Conference on Artificial Intelligence/Innovative Applica- tions of Artificial Intelligence, Madison, USA. 1998. 714-720.
  • 6Billsus D, Pazzani M. User modeling for adaptive news access. User Modeling and User-Adapted Interaction, 2000, 10(2-3): 147-180.
  • 7Claypool M, Gokhale A, Miranda T, et al. Combining content-based and collaborative filters in an online news- paper. In : Proceedings of ACM SIGIR Workshop on Rec- ommender Systems, Berkeley, USA, 1999. 15-21.
  • 8Melville P, Mooney R J, Nagarajan R. Content-boosted collaborative filtering for improved recommendations. In: Proceedings of the 18th National Conference on Artificial Intelligence, Menlo Park, USA, 2002. 187-192.
  • 9Pazzani M. A framework for collaborative, content-based, and demographic filtering. Artificial Intelligence Review, 1999, 13(5-6): 393-408.
  • 10Flach P A, Giraud-Carrier C, Lloyd J W. Strongly typed inductive concept learning. In : Proceedings of the 8th In- ternational Conference on Inductive Logic Programming, Springer-Verlag. 1998, 1446. 185-194.

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部