期刊文献+

准确高效的动态干预决策发现

Accurate and Efficient Dynamic Interventions Discovery
下载PDF
导出
摘要 干预决策是数据挖掘领域关注的重要问题,致力于评价干预措施对干预目标的影响或发现满足干预目标的最优干预措施,而朴素干预规则模型简单,无法精确表达干预知识,且效率较差。在模型设计中引入了马尔科夫链,提出了干预过程动态模型,设计并实现了基于干预力度的动态精确干预评价体系。在中国出生缺陷数据集上的实验表明,该方法可比较精确地发现干预规则。 Intervention decision is the hot topic concerned by data mining fields, which wants to evaluate the influence of intervention methods to intervention targets or discover the most effective method to achieve intervention targets, but naive intervention rule (NIR) does not express interventional knowledge accurately and efficiently due to its simplicity. This paper introduces the idea of Markov chains in intervention model which substantially improves the evaluation accuracy and accelerates the mining process, proposes a dynamic model of intervention process, and designs and realizes an accurate evaluating system of intervention process based on intervention intensity. Experimental results in the dataset of Chinese Birth Defects show the effectiveness of the proposed method.
出处 《计算机科学与探索》 CSCD 2011年第12期1121-1130,共10页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61103043 61173099 高等学校博士学科点专项科研基金No.20090181120064~~
关键词 干预力度 马尔科夫链 动态干预模型 intervention intensity Markov chains dynamic intervention model
  • 相关文献

参考文献11

  • 1唐常杰,张悦,唐良,李川,陈瑜.亚复杂系统中动力学干预规则挖掘技术研究进展[J].计算机应用,2008,28(11):2732-2736. 被引量:7
  • 2Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases[C]//Pro- ceedings of the 1993 ACM SIGMOD International Con- ference on Management of Data (SIGMOD '93), Wash- ington, DC, 1993. New York, NY, USA: ACM, 1993: 207-216.
  • 3唐常杰,段磊,王悦,杨宁,朱军,代礼.干预规则挖掘的任务分类和三项技术进展[J].计算机应用,2010,30(1):10-14. 被引量:4
  • 4朱玉全,陈耿,杨鹤标.正负关联规则挖掘算法研究[J].计算机科学,2006,33(3):188-190. 被引量:10
  • 5Agrawal R, Srikant R. Fast algorithms for mining asso- ciation rules in large database[C]//Proceedings of the 20th International Conference on Very Large Data Bases (VLDB '94). San Francisco, CA, USA: Morgan Kauf- mann Publishers Inc, 1994: 487-499.
  • 6Brin S, Motwani R, Silverstein C. Beyond market basket: generalizing association rules to correlations[C]//Procee- dings of the 1997 ACM SIGMOD International Confer- ence on Management of Data (SIGMOD '97). New York, NY, USA: ACM, 1998: 265-276.
  • 7Han Jiawei, Kamber M. Data mining concepts and tech- niques[M]. Fan Ming, Meng Xiaofeng. 2nd ed. Beijing: China Machine Press, 2007: 68-145.
  • 8Frank R, William P, Steven B, et al. A first course in mathematical modeling[M]. Beijing: China Machine Press, 2009: 211-287.
  • 9Han Jiawei, Pei Jian, Yin Yiwen. Mining frequent patterns without candidate generation[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Manage- ment of Data (SIGMOD '00), Dallas, TX, 2000. New York, NY, USA: ACM, 2000: 1-12.
  • 10张悦,唐常杰,李川,朱军,曾春秋,唐良,刘显宾.出生缺陷监测数据中的朴素干预规则挖掘[J].计算机科学与探索,2009,3(2):188-197. 被引量:5

二级参考文献53

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部