期刊文献+

Potential symmetries and conservation laws for generalized quasilinear hyperbolic equations 被引量:1

Potential symmetries and conservation laws for generalized quasilinear hyperbolic equations
下载PDF
导出
摘要 Based on the Lie group method, the potential symmetries and invariant solutions for generalized quasilinear hyperbolic equations are studied. To obtain the invariant solutions in an explicit form, the physically interesting situations with potential symmetries are focused on, and the conservation laws for these equations in three physi- cally interesting cases are found by using the partial Lagrangian approach. Based on the Lie group method, the potential symmetries and invariant solutions for generalized quasilinear hyperbolic equations are studied. To obtain the invariant solutions in an explicit form, the physically interesting situations with potential symmetries are focused on, and the conservation laws for these equations in three physi- cally interesting cases are found by using the partial Lagrangian approach.
机构地区 School of Mathematics
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第12期1607-1614,共8页 应用数学和力学(英文版)
关键词 conservation law generalized quasilinear hyperbolic equation invariantsolution potential symmetry conservation law, generalized quasilinear hyperbolic equation, invariantsolution, potential symmetry
  • 相关文献

参考文献2

二级参考文献11

  • 1傅景礼,戴桂冬,萨尔瓦多·希梅尼斯,唐贻发.Discrete variational principle and first integrals for Lagrange-Maxwell mechanico-electrical systems[J].Chinese Physics B,2007,16(3):570-577. 被引量:6
  • 2Olver P J. Applications of Lie Groups to Differential Equations [M]. New York: Springer-Verlag,1996.
  • 3Ibragimov N H. Transfermation Groups Applied to Mathematical Pkysics [M]. New York: Springer-Verlag, 1987.
  • 4Bluman G W, Kumei S. Symmetries and Differential Equations [M]. New York: Springer-Verlag,1989.
  • 5Ovsiannikov L V. Croup Analysis of Differential Equations[M] .New York:Academic, 1989.
  • 6Bluman G W, Cole J D. The general similarity solutions of the heat equation[J]. Journal of Mathematics and Mechanics, 1959,18(5) : 1025- 1042.
  • 7Bluman G W, Kumei S. New classes of symmetries for partial differential equation[J]. Journal of Mathematical Physics, 1988,29(4) : 806-811.
  • 8Johnpiliai A G, Kara A H. Nonclassical potential symmetry generators of differential equations[J].Nonlinear Dynamics , 2002 ,30(2) : 157-177.
  • 9Gandaries M L. Nonclassical potential symmetries of the Burgers equation[A]. In: Shkil M, Nikitin A,Boyko V Eds. Symmetry in Nonlinear Mathematical Physics [C]. Vol 1. Klev: Institute of Mathematics of NAS of Ukraine, 1997, 130-137.
  • 10陈向炜,李彦敏.Perturbation to symmetries and adiabatic invariants of a type of nonholonomic singular system[J].Chinese Physics B,2003,12(12):1349-1353. 被引量:6

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部