摘要
高光谱影像具有丰富的光谱信息,与全色、多光谱影像相比能更好地进行地面目标的分类识别.该文对决策树分类算法的优劣进行分析,引入随机决策树群算法,对青海省祁连县Hyperion高光谱影像和IRS-P6影像数据进行实验,使用子空间划分和光谱距离进行降维后,分别采用支持向量机、神经网络、最大似然法进行分类,并与随机决策树群算法分类结果进行比较.结果表明,该算法表现最优且无需降维预处理,可广泛应用于高光谱遥感领域.
Hyperspectral images contain rich spectral information and have better performance in ground target recognition than panchromatic and multispectral images.An extremely randomized clustering forests (ERC-Forests) algorithm is introduced after analysis of the decision tree algorithm.Hyperion hyperspectral images and IRS-p6 image data of Qilian County,Qinghai Province,are used in the experiment.After dimension reduction with subspace methods and based on the spectral range,support vector machine(SVM),neural network(NN) and maximum likelihood(MLC) are used for classification.The results are compared with that of random decision trees algorithm,showing that the extremely randomized clustering forests algorithm is better,without dimension reduction.The method is widely applicable to hyperspectral remote sensing.
出处
《应用科学学报》
EI
CAS
CSCD
北大核心
2011年第6期598-604,共7页
Journal of Applied Sciences
基金
国家自然科学基金(No.50830301)
国家杰出青年科学基金(No.50925417)资助
关键词
高光谱遥感
影像自动分类
模式分类
土地覆盖分类
随机决策树群算法
hyperspectral remote sensing
automatic image classification
pattern classification
land cover classification
extremely randomized clustering forests(ERC-forests)