期刊文献+

用随机决策树群算法进行高光谱遥感影像分类 被引量:5

Hyperspectral Remote Sensing Image Classification with Extremely Randomized Clustering Forests
下载PDF
导出
摘要 高光谱影像具有丰富的光谱信息,与全色、多光谱影像相比能更好地进行地面目标的分类识别.该文对决策树分类算法的优劣进行分析,引入随机决策树群算法,对青海省祁连县Hyperion高光谱影像和IRS-P6影像数据进行实验,使用子空间划分和光谱距离进行降维后,分别采用支持向量机、神经网络、最大似然法进行分类,并与随机决策树群算法分类结果进行比较.结果表明,该算法表现最优且无需降维预处理,可广泛应用于高光谱遥感领域. Hyperspectral images contain rich spectral information and have better performance in ground target recognition than panchromatic and multispectral images.An extremely randomized clustering forests (ERC-Forests) algorithm is introduced after analysis of the decision tree algorithm.Hyperion hyperspectral images and IRS-p6 image data of Qilian County,Qinghai Province,are used in the experiment.After dimension reduction with subspace methods and based on the spectral range,support vector machine(SVM),neural network(NN) and maximum likelihood(MLC) are used for classification.The results are compared with that of random decision trees algorithm,showing that the extremely randomized clustering forests algorithm is better,without dimension reduction.The method is widely applicable to hyperspectral remote sensing.
出处 《应用科学学报》 EI CAS CSCD 北大核心 2011年第6期598-604,共7页 Journal of Applied Sciences
基金 国家自然科学基金(No.50830301) 国家杰出青年科学基金(No.50925417)资助
关键词 高光谱遥感 影像自动分类 模式分类 土地覆盖分类 随机决策树群算法 hyperspectral remote sensing automatic image classification pattern classification land cover classification extremely randomized clustering forests(ERC-forests)
  • 相关文献

参考文献13

  • 1WANG Kai, FRANKLIN S E, Guo Xulin, CATTET M. Remote sensing of ecology, biodiversity and conserva- tion: a review from the perspective of remote sensing specialists [J]. Sensors, 2010, 10(11): 9647-9667.
  • 2TURNER W, SPECTOR S, GARDINER N, FLADELAND M, STETLING E, STEININGER M. Remote sensing for biodiversity science and conserva-tion [Jl. Trends in Ecology and Evolution, 2003, 18(6): 306-314.
  • 3浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2003.
  • 4Tu T M, CHEN C H. A fast two-stage classification method for high-dimensional remote sensing data [C]//IEEE Transactions on Geosciences and Remote Sensing, 1998, 36(1): 182-191.
  • 5JIA Xiuping, RICHARDS J A. Segmented principal components transformation for efficient hyperspec- tral remote-sensing image display and classification [C]//IEEE Transactions on Geosciences and Remote Sensing, 1999, 37(1): 538-542.
  • 6Gu Yanfeng, ZHANG Ye. Unsupervised subspace lin- ear spectral mixture analysis for hyperspeetral im- ages [C]//Image Processing, 2003, Proceedings of In- ternational Conference on Image Processing, 2003, 1: 801-804.
  • 7杨金红,尹球,周宁.一种改进的高光谱数据自适应波段选择方法[J].遥感技术与应用,2007,22(4):513-519. 被引量:16
  • 8BREIMAN L. Random forests [J]. Machine Learning, 2001, 45(1): 5-32.
  • 9GEURTS P, ERNST D, WEHENKEL L. Extremely ran- domized trees [J]. Machine Learning, 2006, 63: 3-42.
  • 10MOOSMANN F, NOWAK E, JURIE F. Randomized clustering forests for image classification [C]//IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2008. 30(9): 1632-1646.

二级参考文献13

共引文献22

同被引文献39

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部