期刊文献+

一种基于随机共振增强的协方差矩阵频谱感知算法 被引量:2

A Spectrum Sensing Algorithm Based on Stochastic Resonance Enhanced Covariance Matrix Detection
下载PDF
导出
摘要 为了在避免对主用户系统产生有害干扰的同时提高频谱利用效率,要求认知无线电系统的频谱感知算法能在极低的信噪比下快速检测出主用户信号。由于可以避免能量检测面临的噪声不确定性问题,基于协方差矩阵的检测算法是一种有效的盲频谱感知算法。为了进一步提高极低信噪比下的性能,本文提出了一种基于随机共振的协方差矩阵频谱感知算法。该算法通过在接收信号中加入优化的特定信号,利用随机共振原理,增大有无主用户信号下的检测统计量概率分布函数的分离度,提高频谱感知的性能。仿真结果表明,相对于现有的协方差矩阵频谱感知算法,在相同的虚警概率下,所提算法可以显著提高极低信噪比下的检测概率,同时大幅度缩减检测时间。 To avoid harmful interference to primary user system and improve the utilization of spectrum resource,it is necessary for the spectrum sensing algorithms of cognitive radio system to detect primary users' signals and identify spectrum resource available as fast as possible under very low signal-to-noise(SNR) environments.Recendy,covariance matrix based spectrum detection algorithm has been proposed as an efficient blind spectrum sensing method in cognitive radio context because it can avoid the noise uncertainty problem suffered by energy detection.To further improve the spectrum sensing performance under very low SNR region,a stochastic resonance enhanced covariance matrix based spectrum sensing algorithm is proposed in this paper.By adding specific optimal signal into the received signals,the proposed covariance matrix based spectrum sensing method can enlarge the deflection of the detection statistics' probability density functions(PDF),which are associate with primary user signal existing,or not.Then,the spectrum sensing performance can be improved under very low SNR region.Comparing with existing covariance matrix based spectrum sensing algorithm, simulation results show that the proposed spectrum sensing method can significantly improve the detection probability as well as reduce detection period for the same probability of false alarm under very low SNR region.
出处 《信号处理》 CSCD 北大核心 2011年第11期1633-1639,共7页 Journal of Signal Processing
基金 自然科学基金资助项目(61071102) 中央高校基本科研业务费专项资金资助(ZYGX2009X002) 国家级重点实验室基金(9140C0202061004) 国家重点基础研究发展计划(973计划)课(2009CB320405) "新一代宽带无线移动通信网"重大专项课题(2010ZX03006-002 2010ZX03005-003)
关键词 随机共振 协方差矩阵检测 频谱感知 认知无线电 Stochastic Resonance Covariance matrix detection Spectrum sensing Cognitive radio
  • 相关文献

参考文献23

  • 1I.F. Akyildiz, W. Y. Lee, M.C. Vuran, et al, "NeXt generation/dynamic spectrum access/cognitive radio wire- less networks: a survey," [J]. Computer Networks, 15 September 2006, 50(13): 2127-2159.
  • 2D. Cabric, I. D. O' Donnell, and M. S. Chen, et al, " Spectrum sharing networks," [ J ]. IEEE Circuits and Sys- tems Magazine, Second Quarter 2006, 6(2):30-45.
  • 3Q. Zhao and B. M. Sadler, "A survey of dynamic spec- trum access : signal processing, networking, and regulato- ry policy," [ J ]. IEEE Signal Processing Magazine, May 2007:79- 89.
  • 4S. Haykin, "Cognitive radio: Brain empowered wireless communications," [ J ]. IEEE J. Sel. Areas Commun. , Feb. 2005, 23(2): 201-220.
  • 5A. Ghasemi and E. S. Sousa, "Spectrum sensing in cog- nitive radio networks: requirements, challenges and de- sign trade-offs," [ J ]. IEEE Communications Magazine, April 2008, 46(4) :32-39.
  • 6T. Yucek and H. Arslan, "A survey of spectrum sensing algorithms for cognitive radio applications," [ J 1. IEEE Commun. Survey & Tutorials, first quarter 2009, 11 ( 1 ) : 116-130.
  • 7S. Haykin, D. J. Thomson and J. H. Reed, "Spectrum sensing for cognitive radio," [ J ]. Proceedings of the IEEE, May 2009, 97 (5) : 849- 877.
  • 8"Draft Standard for Wireless Regional Area Networks Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Poli- cies and procedures for operation in the TV Bands", [ S ]. IEEE P802.22/Draft v2. O, May 2009.
  • 9Y. Zeng, Y-C, Liang, A. T. Hoang, and R. Zhang, "A review on spectrum sensing for cognitive radio: challenges and solutions," [ J ]. EURASIP Jouranl on Advances in Signal Processing, 2010 (2010), Article ID 381465, 15 pages.
  • 10Federal Communications Commission, "The FCC' s Office of Engineering and Technology RELEASES REPORT ON TESTS OF Prototype TV White Space DEVICES ( Execu- tive Summary) ," [ R]. ET Docket No. 04-186( DA-08- 2243Al and DA-08-2243A2), Oct. 2008.

二级参考文献43

  • 1卢志恒,林建恒,胡岗.随机共振问题Fokker-Planck方程的数值研究[J].物理学报,1993,42(10):1556-1566. 被引量:21
  • 2R Benzi, et al. The mechanism of stochastic resonance [ J ]. Journal of Physics A: Mathematical General, 1981,14( 11 ) :453 - 457.
  • 3S Blanchard, D Rousseau,F Chapeau-Blondeau. Noise enhancement of signal transduction by parallel arrays of nonlinear neurons with threshold and saturation[J ]. Neurocomputing, 2007, 71(1 - 3) :333 - 341.
  • 4S Blanchard, D Rousseau, D Gindre, F Chapeau-Blondeau. Constructive action of the speckle noise in a coherent imaging system[ J]. Optics Letters,2007,32(14) : 1983 - 1985.
  • 5D Rousseau, G V Anand, F Chapeau-Blondeau. Noise-enhanced nonlinear detector to improve signal detection in non-Gaussian noise[ J]. Signal Processing, 2006,86(11) : 3456 - 3465.
  • 6F Duan, F Chapeau-Blondeau, D Abbott. Theory of array stochastic resonance in a parallel array of nonlinear dynamical elements[ J]. Physics Letters A, 2008,372(13) : 2159 - 2166.
  • 7F Chapeau-Blondeau,D Rousseau. Noise-aided SNR amplification by parallel arrays of sensors with saturation [ J ]. Physics Letters A,2006,351 (4 - 5) :231 - 237.
  • 8D Rousseau, F Chapeau-Blondeau. Constructive role of noise in signal detction from parallel arrays of quantizers [ J ]. Signal Processing,2005,85(3) :571 - 580.
  • 9S Blanchard, D Rousseau, D Gindre, F Chapeau-Blondeau. Benefits from a speckle noise family on a coherent imaging transmission[J].Optics Communications,2008,281(17) :4173 - 4179.
  • 10F Chapeau-Blondeau, D Rousseau. Enhancement by noise in parallel arrays of sensors with power-law characteristics[ J]. Physical Review E,2004,70(6) :060101.1 - 4.

共引文献151

同被引文献43

  • 1FCC 02- 155,Spectrum Policy Task Force Report[ S].
  • 2Xu Yi, Wang Rui, Wang Fei. Detection of Amplitude- varied Weak Signal by Genetic Adaptive Stochastic Resonance Algorithm[C]// Proceedings of the Eighth International Con- ference on Electronic Measurement and Instruments. Hefei, China: IEEE, 2007: 626 - 630.
  • 3Akyildiz Ian F, Lee Won- Yeol, Vuran M C, et al. Next Generation/Dynamic Spectrum Access/Cognitive Radio Wireless Networks: a Survey[J]. Computer Networks, 2006, 50 (9) : 2127 - 2159.
  • 4Digham F F, Alouini M S, Simon M K. On the energy detection of unknown signals over fading channels[J] .IEEE Transactions on Connnunications, 2007,55 (1) : 21 - 24.
  • 5Ikuma T, Nagaghi - Pour M. A comparison of three classes of spectrum sensing techniques [ C ]//Proceedings of Global Telecommunications Conference. New Orleans, LO: IEEE, 2008:1 -5.
  • 6Tkachenko A, Cabric D, Brodersen R W. Cyclostationary feature detector experiments using reconfigurable BEE2 [ C]//Proceedings of 2rid IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks. Dublin, Ireland: IEEE, 2007: 216 - 219.
  • 7Lunden J, Koivunen V, Huffunen A, et al. Calla borative cyclostationary spectrum sensing for cognitive radio systems [J]. IEEE Transactions on Signal Processing, 2009, 57 (11): 4182-4192.
  • 8Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance[ J]. Journal of Physics A: Mathematical and General, 1981, 14(11) : 453-457.
  • 9Zozor S, Amblard P O. Stochastic resonance in discrete time nonlinear AR(1) models[J]. IEEE Transactions on Signal Processing, 1999, 47(1): 108- 122.
  • 10Zozor S, Amblard P O. Stochastic resonance in locally optimal detectors[ J]. IEEE Transactions on Signal Processing, 2003, 51(12): 3177-3181.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部