期刊文献+

均值和方差双重变点的贝叶斯侦测 被引量:7

Bayesian Detection of Structure Changes of both Mean and Variance
下载PDF
导出
摘要 本文应用贝叶斯方法研究了股价时序的均值和方差双重变点问题。基于后验概率比,我们提出一个类似ICSS算法的快速侦测算法。通过对上证指数时序的实证分析,我们总共发现5处方差突变。其中,3处是均值和方差双重变点,它们都对应中国股市的重大结构变化。 This article uses a Bayesian procedure to study structure changes of both mean and variance in stock price time series.A fast algorithm like ICSS algorithm is proposed to detect change points of both mean and variance based on posterior odds.We discover five changes of variance in a Shanghai composite index time series.Three of them are change points of both mean and variance that indicate significant structure changes in Chinese stock market.
出处 《统计研究》 CSSCI 北大核心 2011年第11期91-97,共7页 Statistical Research
关键词 贝叶斯 变点 上证指数 Bayesian Change Points Shanghai Composite Index
  • 相关文献

参考文献13

二级参考文献30

  • 1Quandt, R. E.. Tests of the Hypothesis that a Linear Regression Obeys Two Separate Regimes [J]. Journal of the American Statistical Association, 1960.55: 324-330.
  • 2Andrews, D. W. K., Ploberger, W.. Optimal Tests when a Nuisance Parameter is Present Only Under the Alternative [J]. Econometrica, 1994,. 62 : 1383-1414.
  • 3Brown, B. , Durbin, J. , Evans, J.. Techniques for Testing the Constancy of Regression Relationships Over Time [J]. Journal of the Royal Statistical Society, 1975, 37: 149-172.
  • 4Andrews, D. W. K. , Lee, I. , Ploberger, W.. Optimal Change Point Tests for Normal Linear Regression [J]. Journal of Econometrics, 1996,70: 9-38.
  • 5Bai, J.. Estimation of a Change Point in Multiple Regression Models [J]. Review of Economics and statistics, 1997,79:551-563.
  • 6Broemeling, L. D.. Bayesian Inferences about a Changing Sequence of Random Variables [J]. Communica tions in Statistics-Theory and Methods, 1974,3 : 243- 255.
  • 7Lee, A. F. S. , Heghinian, S. M.. A Shift of the Mean Level in a Sequence of Independent Normal Random Variables: a Bayesian Approach [J]. Technomettics,1977,19: 503-506.
  • 8Carlin, B. P., Gelfand, A. E., Smith, A. F. M., Hierarchical Bayesian analysis of Change point problems [J]. Applied Statistics, 1992,41: 389-405.
  • 9Stephens, D. A.. Bayesian Retrospective Multiple- change Point Identification [J]. Applied Statistics, 1994,43 : 159-178.
  • 10Lee, C. B.. Bayesian Analysis of a Change point in Exponential Families with Applications [J]. Computa tional Statistics and Data Analysis, 1998,. 27:195 - 208.

共引文献187

同被引文献59

引证文献7

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部