期刊文献+

8PSK信号在衰落信道下信噪比盲估计算法 被引量:2

Blind SNR Estimation Algorithm for 8PSK Signal in Fading Channel
下载PDF
导出
摘要 针对传统信噪比估计算法要求利用训练序列或一帧数据范围内信道系数恒定等问题,文章提出了一种8PSK信号在衰落信道下盲信噪比估计算法。该算法利用信道系数的统计特性,理论分析信噪比与接收信号的数值关系,采用多项式数据拟合和观测量归一化处理的方式,推导信噪比与接收信号解析式。数值仿真表明该算法在0~8dB范围内,可取得良好的信噪比估计效果。 In allusion to the problem of requiring training sequence or channel coefficients being constant in the frame for traditional SNR estimating,the paper proposes a blind SNR estimation algorithm for 8PSK signal in fading channel.The algorithm theoretically analyzes the relation between the SNR and receiving signal,and deduces its analytic expression by polynomial fitting and middle observation value normalizing based on the Statistical properties of the channel.The numerical simulation indicates that the algorithm can achieve perfect SNR estimation effect for the SNR between 0 to 8dB.
出处 《舰船电子工程》 2011年第11期53-56,78,共5页 Ship Electronic Engineering
关键词 信噪比估计 衰落信道 数据拟合 高斯分布 瑞利分布 SNR estimation fading channel data fitting Gaussian distribution Rayleigh distribution
  • 相关文献

参考文献12

  • 1BEAULIEU N C, TOMS A S, PAULUZZID R. Com- parison of four SNR estimations for QPSK modulations [J]. IEEE Communication Letters,2002,4(2):43-45.
  • 2许华,樊龙飞,郑辉.一种精确的QPSK信号信噪比估计算法[J].通信学报,2004,25(2):55-60. 被引量:30
  • 3蒋政波,洪伟,刘进,田玲.基于数据辅助的AWGN信道下QPSK信号信噪比估计[J].通信学报,2008,29(6):119-125. 被引量:17
  • 4REN G, CHANG Y L, ZHANG H. A new SNR's es- timator for QPSK modulations in an AWGN channel [J]. IEEE Trans on circuits and systems,2005,52(6):336-338.
  • 5SHIN J D, SUNG W J, KIM I K. Simple SNR estima- tion methods for QPSK modulated short bursts[C]// Proc IEEE GLOBECOM, 2001: 3644-3647.
  • 6Beaulieu, N. C. , Toms, A. S. , Pauluzzi, D.R. Com- parison of four SNR estimators for QPSK modulations [J]. IEEE Communications Letters, 2002,4 (2) : 43 - 45.
  • 7许华,樊龙飞,郑辉.QAM信号的非数据辅助信噪比估计方法[J].电子与信息学报,2005,27(2):202-205. 被引量:2
  • 8A. Ramesh, A. Chockalingam, L. B. Milstein. SNR estimation in generalized fading channels and its applica- tion to Turbo decoding[C]//International Con{erence on Comunications, 2001 (ICC2001 ) MIL-STD-188-110B.
  • 9Interoperability and performancestandards for data modems[S]. US Dept of Defence, May 27,2000.
  • 10J.W. Caring. A New Simple and Exact Result for Ca- caulating the Probability of Error for Two-Dimensional Signal Constellations[J]. Proe. IEEE MILCOM'91, 1991,10:571-575.

二级参考文献21

  • 1付文君,姜景山,王拴荣,刘思昱.QPSK数字接收机中的SNR估计的新方法[J].电子与信息学报,2007,29(2):255-259. 被引量:7
  • 2Namias V,The fractional transform and applicarion in quantum mechanics[J]. J Inst Math Its Appl, 1980, (25) : 241-265
  • 3Bailey D H, Swarztauber P N. The fractional fourier transform and applications[J]. SIAN Review, 1991,33 (3) 389-404
  • 4[1]SUMMER T A, WILSON S G. SNR mismatch and online estimation in Turbo decoding[J]. IEEE Trans Communications, 1998, 46(4):421-423.
  • 5[2]RAMESH A, CHOCKALINGAM A. MILSTEIN L B. SNR estimation in generalized fading channels and its application to Turbo decoding[A]. Proc IEEE ICC[C]. 2001.1094-1098.
  • 6[3]SHIN J D, SUNG W J, KIM I K. Simple SNR estimation methods for QPSK modulated short bursts[A]. Proc IEEE GLOBECOM, 2001[C]. 2001.3644-3647.
  • 7[4]BEAULIEU N C, TOMS A S, PAULUZZI D R. Comparison of four SNR estimators for QPSK modulations[J]. IEEE Commun Letters, 2002, 4(2): 43-45.
  • 8[5]JOHN G. Proakis Digital Communication[M]. McGraw-Hill, 1995.
  • 9Summer T A, Wilson S G. SNR mismatch and online estimation in turbo decoding. IEEE Trans. on Communications, 1998, COM46(4): 421 - 423.
  • 10Ramesh A, Chockalingam A, Milstein L B. SNR estimation in generalized fading channels and its application to turbo decoding.Proc. IEEE ICC, 2001, Helsinki, Finland, 2001: 1094 - 1098.

共引文献40

同被引文献15

  • 1Francois-xavier Socheleau. Non data-aided SNR estimation of OFDM siganals [J]. IEEE Communications Letters, 2008, 12 (11): 813-814.
  • 2REN G, CHANG Y L, ZHANG H. A new SNR's estimator for QPSK modulations in an AWGN channel [J]. IEEE Trans on Circuits and Systems, 2005, 52 (6): 336-338.
  • 3CHEN Yunfei, Norman C Beaulieu. An approximate maximum likelihood estimator for SNR iointly using pilot alld data symbols [J]. IEEE Communications Letters, 2005, 9 (6): 517-519.
  • 4Markus A Dangel, Jurgen Lindner. How to use a priori infor- mation of data symbols for SNR estimation [J]. IEEE Signal Processing Letters, 2006, 13 (11):661-662.
  • 5Talakoub S, Shahrrava B. Turbo equalization with iterative online SNR estimation [C]. New Orleans, LA: Proe IEEE WCNC, 2005: 1097-1102.
  • 6Dangl M A, Lindner J. Turbo equalization with parametric uncertainties: Comparison of SNR estimation algorithms [C]. Antalya, Turkey: Proc 2nd COST 289 Workshop, 2005: 129-133.
  • 7Socheleau F. Non data-aided SNR estimation of OFDM siganals[J]. IEEE Communication Letters, 2008, 12(11): 813-814.
  • 8Ren Guangliang, Chang Yilin, Zhang Hui. A new SNR's estimator for QPSK modulations in an AWGN channel [J]. IEEE Trans on Circuits and Systems, 2005, 52(6): 336-338.
  • 9Chen Yunfei, Beaulieu N C. An approximate maximum likelihood estimator for SNR jointly using pilot and data symbols [ J]. IEEE Communication Letters, 2005, 9 (6) : 517-519.
  • 10Dangel M A, Lindner J. How to use A priori information of data symbols for SNR estimation[ J]. IEEE Siganl Pro- cessing Letters, 2006, 13 ( 11 ) : 661-662.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部