期刊文献+

引力场梯度张量的非奇异公式推导 被引量:4

New Derivation of Nonsingular Expression for Gravitational Gradients Calculation
原文传递
导出
摘要 传统的引力场梯度计算公式在两极附近存在奇异性,需要换用其他的非奇异计算公式。从奇异性产生的原因入手,并结合勒让德函数的有关性质,推导了一组新的计算公式。实际计算验证了该公式的正确性和有效性。 GOCE has released gravity gradients,but there aren't data in polar regions because the inclination of the orbit is about 96.7°.We need to simulate data with known gravity field model in this area,whereas many formulas to compute the gravity gradients are singular at poles,which can cause a lot of difficulties in gravity field recovery using GOCE data.In order to overcome the so-called singularities,we firstly analyze the singular term,then derives a new nonsingular expression for gravitational gradients calculation based on properties of Legendre function.At last we compare several different formulas through calculation.The proposed formulas is more accurate than conventional methods.
作者 万晓云
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2011年第12期1486-1489,共4页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(41074015) 中国科学院资源环境科学与技术局专项资助项目(XMXX280730)
关键词 GOCE卫星 引力场梯度 非奇异 勒让德函数 GOCE satellite gradient of the gravitational field nonsingular Legendre function
  • 相关文献

参考文献5

  • 1CunninghamL E. On the Computation of the Spher- ical Harmonic Terms Needed During the Numerical Integration of the Orbital Motion of an Artificial Satellite[J]. Celestial Mechanics, 1970 (2) :207- 216.
  • 2Balmino G, Barriot J P, Vales N. Non-singular Formulation of the Gravity Vector and Gravity Gra- dient Tensor in Spherical Harmonics[J].Manuscr Geod, 1989, 15(1): 11-16.
  • 3Petrovskaya M S, Vershkov A N. Non-singularExpressions for the Gravity Gradients in the Local North-oriented and Orbital Reference Frames [J].Journal of Geodesy, 2006, 80(3): 117-127.
  • 4Fantino E, Casotto S. Methods of Harmonic Syn- thesis for Global Geopotential Models and their First-, Second- and Third-Order Gradients [J]. Journal of Geodesy, 2009, 83(7): 595-619.
  • 5于锦海,万晓云.计算Legendre函数导数的非奇异方法[J].测绘科学技术学报,2010,27(1):1-3. 被引量:18

二级参考文献8

  • 1彭富清,夏哲仁.超高阶扰动场元的计算方法[J].地球物理学报,2004,47(6):1023-1028. 被引量:10
  • 2吴星,刘雁雨.多种超高阶次缔合勒让德函数计算方法的比较[J].测绘科学技术学报,2006,23(3):188-191. 被引量:42
  • 3HOLMES S A, FEATHERSTONE W E. A unified approach to Clenshaw summation and the recursive computationn of very high degree and order normalised associated Legendre functions[J]. Journal of Geodesy, 2002, 76 (5) : 279-299.
  • 4JEKELI C, LEE J K. On the computation and approximation of ultra-high-degree spherical harmonic series[J]. Journal of Geodesy 2007,81(9) : 603-615.
  • 5FANTINO E, CASOTTO S. Methods of harmonic synthesis for global geopotential models and their first, second and thirdorder gradients[J]. Journal of Geodesy, 2009,83 (7) : 595-619.
  • 6PETROVSKAYA M S, VERSHKOV A N. Non-singular expressions for the gravity gradients in the local north-oriented and orbital reframes[J]. Journal of Geodesy, 2006, 80(3): 117-127.
  • 7BALMINIO G, BARRIOT J P, VALES N. Non-singular formulation of the gravity vector and gravity gradient tensor in spherical harmonic[J]. Manuscript Geodaetica, 1990, 15 (1): 11-16.
  • 8吴星,张传定,叶修松,韩智超.卫星重力梯度数据的模拟研究[J].测绘科学技术学报,2008,25(6):391-395. 被引量:11

共引文献17

同被引文献67

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部