摘要
对于不定方程x3+y3+z3+w3=n,证明了:当n=18k±1或n=18k±7或n=18k±8或n=6k±3时,它有无穷多组整数解,这里k为任意整数.
This paper deals with the Diophantine equation x3+y3+z3+w2=n.It is proved that the Diophantine equation has infinitely many integral solutions,when n=18k±1 or n=18k±7 or n=18k±8 or n=6k±3,where k is an tnteger.
基金
泰州师范高等专科学校基金资助项目(2010-ASL-09)
关键词
不定方程
模
同余
整数解
Diophantine equation
modulus
congruence
integral solution