期刊文献+

微分方程f″+A(z)f=0的解的零点充满圆 被引量:1

The Zero-Filling Discs of Infinite Order of Solutions for Differential Equation f″+A(z)f=0
下载PDF
导出
摘要 设f1和f2是复方程f″+A(z)f=0的2个线性无关解,其中A(z)是一个整函数,记E=f1f2.利用无穷增长级函数的型函数,对E的零点分布进行了研究,得到了λ(E)=∞的情况下E的零点充满圆序列的一些结果. Letfν1 andfν2 be two linearly independent solutions of the equationf''+Af=0, and let E=fν1fν2, where A(z) is an entire function. In this paper, the distribution of zeros of E is investigated. By using the type function of infinity order function, some results about the filling disc sequence of zeros of E in the case λ(E)=oo are obtained.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2011年第5期444-446,共3页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 江西省自然科学基金(2010GZC0187) 江西省教育和科技计划(GJJ11640)资助项目
关键词 亚纯函数 NEVANLINNA理论 复方程 充满圆 meromorphic function Nevanlinna theory complex equation filling disc
  • 相关文献

参考文献7

二级参考文献25

  • 1易才凤.高阶微分方程解的辐角分布[J].数学学报(中文版),2005,48(1):133-140. 被引量:7
  • 2金瑾.复方程f″+Af=0的解的零点充满圆[J].数学进展,2005,34(5):609-613. 被引量:28
  • 3Laine I.Nevanlinna Theory and Complex Differential Equations.Berlin: de Gruyter,1993
  • 4Bank S,Laine I.On the oscillation theory off''+Af=0 where A is entire.Trans Amer Math Soc,1982,273: 351-363
  • 5Gundersen G.On the real zeros of solutions of f''+Af=0 where A is entire.Ann Acad Sci Fenn Ser AI Math,1986,11: 275-294
  • 6Wu S J.On the location of zeros of solutions of f''+Af=0 where A is entire.Math Scand,1994,74: 293-312
  • 7Hille E.Lectures on Ordinary DifferentialEquations.Reading,Massachusetts: Addison-Wesley,1969
  • 8Hayman W.Meromorphic Functions.Oxford: Clarendon,1964
  • 9Tsuji M.Potential Theory in Modern Function Theory .Tokyo: Maruzen ,1959
  • 10Bank S,Laine I,Langley J.On the frequency of zeros of solutions of second order linear differential equations.Resultate Math,1986,10:8-24

共引文献33

同被引文献13

  • 1张丹萍.向量值Nevanlinna第二基本定理的余项S(r)的估计[J].工科数学,1999,15(1):28-35. 被引量:2
  • 2张丹萍,雷纪刚.向量值Nevanlinna理论初探[J].工科数学,1997,13(2):16-23. 被引量:3
  • 3窦盼英,张先荣.关于亚纯函数导数的亏量[J].河南师范大学学报(自然科学版),2007,35(3):167-168. 被引量:2
  • 4张丹萍.向量值Nevanlinna第二基本定理的应用[J].北京机械工业学院,2002,18(2):28-34.
  • 5Hayman W K. Meromorphic functions [ M ]. Oxford : Clarendon Press, 1964.
  • 6Lahiri I. Milloux theorem and deficiency of vector-valued meromorphic functions [ J ]. J Indian Math Soc, 1990,55 (2) :235-250.
  • 7Hans J W Z. Vector valued Nevanlinna theory [ M ]. Bos- ton, Mass-London: Pitman Advanced Publishing Program, 1982.
  • 8Wu Zhaojun, Chen Yuxian. An inequality of meromorphic vector functions and its application [ J ]. Abstract and Ap- plied Analysis,2011, Article ID 518972,13.
  • 9Chuang Chitai. Differential polynomials of meromorphic functions [ M ]. Beijing : Beijing Normal University Press, 1999 : 177-197.
  • 10徐洪焱,易才凤.圆环内亚纯函数的拟亏量[J].江西师范大学学报(自然科学版),2008,32(3):309-312. 被引量:5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部