期刊文献+

基于周期项方法选择的季节性时序预测 被引量:4

Seasonal Time Series Forecasting Based on Seasonality Method Selection
下载PDF
导出
摘要 根据每个单步预测序列各自具有的特征,通过周期项重构把多步预测转化为单步预测,提出一种预测方法选择策略。为每个单步预测序列选择一个最合适的预测方法,利用选择的方法建模预测周期项,结合灰色预测模型对趋势项的预测值,建立季节性时间序列整体预测模型。实验结果表明,该模型能克服周期项多步预测的缺点,具有较高的预测精度。 The seasonality of seasonal time series is reconstructed to transform the multi-step ahead forecasting into a single-step forecasting.According to the characteristics of every single-step forecasting time series,a forecasting selection approach is presented.As for every single-step forecasting,most proper forecasting method comes up,then the method selected is used to build a model to predict seasonality.Combining the forecasted trend with the predicted values obtained by a grey forecasting model,the integral seasonal time series forecasting model is established.The comparison of forecasting results show that this model outperforms the multi-step ahead forecasting with better forecasting performance.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第21期131-132,135,共3页 Computer Engineering
基金 国家自然科学基金资助项目(71071047) 高等学校博士点基金资助项目(20090111110016)
关键词 周期项重构 方法选择 周期项预测 季节性时间序列 seasonality reconstruction method selection seasonality forecasting seasonal time series
  • 相关文献

参考文献6

  • 1Wei W W S. Time Series Aninlysis: Univariate and Multivariate Methods[M]. 2nd ed. [S. 1.]: Addison Wesley, 2005.
  • 2王阅,高学东,武森,陈敏.时间序列周期模式挖掘的周期检测方法[J].计算机工程,2009,35(22):32-34. 被引量:7
  • 3Zhang G E Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model[J]. Neurocomputing, 2003, 50(l): 159-175.
  • 4Tseng F M, Yu H C, Tzeng G H. Applied Hybrid Grey Model to Forecast Seasonal Time Series[J]. Technological Forecasting and Social Change, 2001, 67(2-3): 291-302.
  • 5Shah C. Model Selection in Univariate Time Series Forecasting Using Discriminate Analysis[J]. International Journal of Forecast- ing, 1997, 13(4): 489-500.
  • 6Wang Xiaozhe, Smith-Miles K, Hyndman R. Rule Induction for Forecasting Method Selection: Meta-learning the Characteristics of Univariate Time Series[J]. Neurocomputing, 2009, 72(12): 2581- 2594.

二级参考文献6

  • 1Han Jiawci, Dong Guozhu, Yin Yiwen. Efficient Mining of Partial Periodic Patterns in Time Series Databases[C]//Proc. of the 15th int'l Conf. on Data Engineering. Sydney, Australia: [s. n.], 1999: 106-115.
  • 2Aref W G, Elfeky M G, Elmagarmid A K. Incremental, Online and Merge Mining of Partial Periodic Patterns in Time Series Databases[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(3): 332-342.
  • 3Elfeky M, Aref W, Elmagarmid A. Periodicity Detection in Time Series Databases[J]. IEEE Transactions on Knowledge and Data Mining, 2005, 17(7): 875-887.
  • 4Elfeky M G, Aref W G, Elmagarmid A K. WARP: Time Warping for Periodicity Detection[C]//Proc. of the 15th IEEE Int'l Conf. on Data Mining. [S. l]: IEEE Press, 2005: 138-145.
  • 5PapadJmitriou S, Brockwell A, Faloutsos C. AWSOM: Adaptive, Hands-off Stream Mining[C]//Proc. of the 29th Int'l Conf. on Very Large Databases. Berlin, Germany: [s. n.], 2003:560-571.
  • 6Chen Lei, Ng R. On the Marriage of Lp-norm and Edit Distance[C]//Proc. of the 30th International Conference on Very Large Database. Toronto, Canada: [s. n.], 2004: 792-803.

共引文献6

同被引文献33

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部