期刊文献+

基于聚类和MRF模型的场景文字提取方法 被引量:4

Scene Text Extraction Method Based on Clustering and MRF Model
下载PDF
导出
摘要 提出一种从自然场景中提取文本区域的方法。该方法包括候选文本区域的提取,以及候选区域是否为文字区域的判定。候选文字区域的提取,主要利用图像的纹理特征和HSL颜色空间信息,通过改进的模糊C均值聚类函数,结合拉普拉斯掩膜与计算最大梯度差来实现。由连通域边缘密度信息、形状信息的马尔科夫随机场模型,判定候选文字区域是否为文字区域。经ICDAR2003数据库测试结果表明,该方法具有较高的精确度。 This paper proposes a method for extracting text regions from natural scene images.This method includes two parts,text region candidates extraction and candidate regions further classification of text region or non-text region.The text region candidates are extracted through a modified fuzzy C-means clustering algorithm combined with Laplacian mask and maximum gradient difference value,which involves texture features and HSL color space information.The candidate regions are checked by edge density information and shape information of the connected components based on Markov Random Field(MRF) model.The proposed method achieves reasonable accuracy for text extraction from examples of the ICDAR 2003 database.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第21期176-178,181,共4页 Computer Engineering
关键词 模糊C均值聚类 HSL颜色空间 拉普拉斯掩膜 最大梯度差 马尔科夫随机场模型 fuzzy C-means clustering HSL color space Laplacian mask maximum gradient difference Markov Random Field(MRF) model
  • 相关文献

参考文献12

  • 1Zhang Yi, Tan Kok Kiong. Text Extraction from Images Captured via Mobile and Digital Devices[J]. International Journal of Computational Vision and Robotics, 2009, 1(1): 34-58.
  • 2Suen H M, Wang Jhing Fa. Segmentation of Uniform Colored Text from Color Graphics Background[J]. IEE Proceedings on Vision, Image and Signal Processing, 1997, 144(6): 317-322.
  • 3程豪,黄磊,刘金刚.基于笔画提取和颜色模型的视频文字分割算法[J].计算机工程,2009,35(4):193-195. 被引量:4
  • 4Sauvola J, Pietiktiinen M. Adaptive Document Image Binariza- tion[J]. Pattern Recognition, 2000, 33(2): 225-236.
  • 5Kim K I, Jung K, Kim J H. Texture Based Approach for Text Detection in Images Using Support Vector Machines and Continuously Adaptive Mean Shift Algorithm[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1631- 1639.
  • 6Thillou C M, Gosselin B. Color Text Extraction with Selective Metric Based Clustering[J]. Computer Vision and Image Understanding, 2007, 107(1/2): 9%107.
  • 7Angadi S A. A Texture Based Methodology for Text Region Extraction from Low Resolution Natural Scene Images[/]. International Journal of Image Processing, 2009, 3(5): 184-251.
  • 8Angadi S A, Kodabagi M M. Image Decomposition Combining Staircase Reduction and Texture Extraction[J]. Journal of Visual Communication and Image Representation, 2007, 18(6): 464-486.
  • 9Lee S H, Seok J H, Min K M. Scene Text Extraction Using Image Intensity and Color Information[C]//Proc. of CCPR'09. Nanjing,China: [s. n.], 2009.
  • 10Phan T Q, Shivakumara E A Skeleton-based Method for Multi-oriented Video Text Detection[C]//Proc. of the 9th IAPR International Workshop on Document Analysis Systems. Boston, USA: [s. n.], 2010.

二级参考文献6

  • 1Wu V, Manmatha R, Pdseman E M. Text Finder: An Automatic System to Detect and Recognize Text in Images[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1999, 21(11): 1224- 1229.
  • 2Chen Datong, Odobesz J M, Bourlard H. Text Segmentation and Recognition in Complex Background Based on Markov Random Field[C]//Proc, of the ICPR'02. Quebec, Canada: [s. n.], 2002: 227- 230.
  • 3Zhan Yaowen, Wang Weiqiang, Gao Wen. A Robust Split-and-Merge Text Segmentation Approach for Images[C]//Proc. of the ICPR'06. Hong Kong, China: [s. n.], 2006: 1002-1005.
  • 4Li Huiping, Doermann D, Kia O. Automatic Text Detection and Tracking in Digital Video[J]. IEEE Trans. on Image Processing, 2000, 9(1): 147-156.
  • 5Ye X, Cheriet M, Suen C Y. Stroke-model-based Character Extraction from Gray-level Document Images[J]. IEEE Trans. on Image Processing, 2001, 10(8): 152-161.
  • 6傅立波.复杂背景图像中的叠加文字提取技术研究[D].北京:中国科学院计算技术研究所,2006.

共引文献3

同被引文献11

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部