期刊文献+

中文搜索引擎用户行为的演化分析 被引量:10

Dynamic Analysis of Chinese Search Engine User Behavior
下载PDF
导出
摘要 搜索引擎已经成为人们生活和工作中不可或缺的信息获取工具,对于互联网信息的合理、充分利用发挥着至关重要的作用。用户行为分析一直是搜索引擎提升性能的重要途径,但当前的搜索用户行为分析技术多局限在较短时间段,缺乏对长期时间内用户行为的演化分析研究。基于商业搜索引擎提供的海量规模日志数据,对2006年到2011年间中文搜索引擎用户行为的演化规律进行了分析挖掘,从中得到的结论对于进行搜索技术未来发展方向的讨论具有一定的参考价值。 Search engine has been one of the most important information acquisition tools on the Web.To meet users' information needs,most commercial search engines rely on user behavior analysis to improve the performance of result ranking,data quality estimation,Web spam detection and other related techniques.However,these works seldom focus on long-term dynamic analysis of user behavior,which may be essential for both system architecture and user interface designing of future search techniques.Based on a large-scale user behavior data provided by a most popular Chinese search engine,search behavior between 2006 and 2011 was studied,producing many findings which may help us better understand how users grow with search engines.
出处 《中文信息学报》 CSCD 北大核心 2011年第6期90-97,共8页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60736044 60903107 61073071) 高等学校博士学科点专项科研基金资助项目(20090002120005)
关键词 搜索引擎 用户行为分析 演化分析 search engine user behavior analysis dynamic analysis
  • 相关文献

参考文献22

  • 1中国互联网络信息中心.中国互联网络发展状况统计报告(2011年7月)[EB/OL].http://cnnic.cn/dtygg/dtgg/20l107/w020110719521725234632.pdf.
  • 2Henzinger, M. R., Motwani, R., and Silverstein, C. 2002. Challenges in web search engines[J]. SIGIR Forum 36, 2 (Sep. 2002): 11- 22.
  • 3Amit Singhal. 2005. Challenges in running a commer- cial search engine[C]//Proceedings of the 28th annual international ACM SIGIR conference on Research anddevelopment in information retrieval (SIGIR ' 05). ACM, New York, NY, USA: 432-432.
  • 4Guo F, Liu C, Wang Y. 2009. Efficient multiple-click models in web search [C]//Proceedings of the 2nd ACM international Conference on Web Search and DataMining (Barcelona, Spain, February 09-12, 2009). R. Baeza-Yates, P. Boldi, B. Ribeiro-Neto, and B. B. Cambazoglu, Eds. WSDM 709. ACM Press, New York, NY, 124-131.
  • 5Liu Y, Zhang M, Ru L, Ma S. 2006. Automatic que- ry type identification based on click through informa- tion[C]//H. T. Ng et al. (Eds.) : AIRS 2006, LNCS4182, 593-600.
  • 6Yiqun Liu, Junwei Miao, Min Zhang, Shaoping Ma, Liyun Ru. How Do Users Describe Their Information Need: Query Recommendation based on Snippet ClickModel[J]. Expert Systems With Applications. 2011, 38(11) : 13847-13856.
  • 7Bo Zhou, Min Zhang, Shaoping Ma, Yiqun Liu, Liyun Ru, Log-Mining Based Query Spelling Correc- tion for Chinese Search Engines[J]. Journal of Compu-rational Information Systems, 2009, 5(3) : 1225-1234.
  • 8Liu Y, Gao B, Liu T, Zhang Y, Ma Z, He S, Li H. 2008. BrowseRank: letting web users vote for page importance[C]//Proceedings of the 31st Annual inter-national ACM SIGIR Conference on Research and De2 velopment in information Retrieval (Singapore, Singa- pore, July 20-24, 2008). SIGIR ' 08. ACM Press,New York, NY: 451-458.
  • 9Yiqun Liu, Fei Chen, Weize Kong, Huijia Yu, MinZhang, Shaoping Ma, Liyun Ru. Identifying Web Spam with the Wisdom of the Crowds [J]. ACM Transaction on the Web. 2011.
  • 10ComScore. Global Search Market Draws More than 100 Billion Searches per Month [EB/OL]. http:// www. comscore, com/Press_Events/Press_Releases/2009/8/Global_Search_Market_Draws_More_than_100_Billion_Searches_per_Month.

二级参考文献39

  • 1王建勇,单松巍,雷鸣,谢正茂,李晓明.Web search engine:characteristics of user behaviors and their implication[J].Science in China(Series F),2001,44(5):351-365. 被引量:4
  • 2余慧佳,刘奕群,张敏,茹立云,马少平.基于大规模日志分析的搜索引擎用户行为分析[J].中文信息学报,2007,21(1):109-114. 被引量:117
  • 3CNNIC (China Internet Network Information Center).The 25st report in development of Internet in China[R].http://www.cnnic.net.cn/uploadfiles/pdf/2010/1/15/101600.pdf.2010.
  • 4Cockburn,A.and Jones,S.Which way now? Analysing and easing inadequacies in WWW navigation[J].International Journal of Human-Computer Studies,1996,45,105-129.
  • 5Tauscher,L.,& Greenberg,S.How people revisitweb pages:Empirical findings and implications for the design of history systems[J].International Journal of Human-Computer Studies,1997,47,97-137.
  • 6Craig Silverstein,Monika Henzinger,Hannes Marais,et al.Analysis of a very large Web search engine query log[C]//SIGIR Forum,1998,33 (1):6-12.
  • 7Agichtein E,Brill E,Dumais S.Improving web search ranking by incorporating user behavior information[C]//SIGIR06,New York,NY,USA,2006:19-26.
  • 8Dou Z,Song R,Yuan X,Wen J.Are click-through data adequate for learning web search rankings?[C]//Proceeding of the CIKM '08.ACM,New York,NY,2008:73-8.
  • 9Danny Sullivan,Search Engine Sizes[R].In search engine watch website,http://searchenginewatch.com/reports/article,php/2156481.
  • 10Joachims T,Granka L,Pan B,Hembrooke H,Gay G.Accurately interpreting clickthrough data as implicit feedback[C]//Proceedings of the SIGIR'05.ACM,New York,NY,2005,154-161.

共引文献171

同被引文献138

引证文献10

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部